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Abstract—Recently, Ni-InGaAs has been required for 
high-performance III-V MOSFETs as a promising 
self-aligned material for doped source/drain region. 
As downscaling of device proceeds, reduction of 
contact resistance (Rc) between Ni-InGaAs and n-
InGaAs has become a challenge for higher 
performance of MOSFETs. In this paper, we 
compared three types of sample, vacuum, 2% H2 and 
4% H2 annealing condition in rapid thermal 
annealing (RTA) step, to verify the reduction of Rc at 
Ni-InGaAs/n-InGaAs interface. Current-voltage (I-V) 
characteristic of metal-semiconductor contact 
indicated the lowest Rc in 4% H2 sample, that is, 
higher current for 4% H2 sample than other samples. 
The result of this work could be useful for 
performance improvement of InGaAs n-MOSFETs. 
 
Index Terms—InGaAs, Ni–InGaAs, hydrogen, contact 
resistance reduction, specific contact resistivity  

I. INTRODUCTION 

The development of post-Si technology requires 
channel materials that have higher motility than Si [1]. 
Si-based devices lead the semiconductor industries 

because of their high concentration in earth and good 
quality of SiO2. However, a low carrier mobility of Si 
sets limitation on the device performance, thus affecting 
the high channel resistance and low carrier supply [2, 3]. 
InxGa1-xAs is a promising channel material of post-Si n-
MOSFETs, because of its high electron mobility, low 
electron effective mass and moderate bandgap energy [3-
7]. Owing to these properties, InGaAs n-MOSFETs have 
low operating voltage and fast signal response. However, 
InGaAs devices also need metal-alloy semiconductors to 
reduce the source to drain resistance like that in the Si-
based devices [8, 9]. Ni-InGaAs is one of the most 
commonly used materials of research in InGaAs-based 
metal-alloy semiconductors [1-9]. It is formed by thermal 
reaction of both Ni and InGaAs layers. The formation of 
Ni-InGaAs changes the lattice constant and crystalline 
structure [10]. These difference of lattice constant and 
crystalline between Ni-InGaAs and InGaAs generate 
many dangling bond and degrade interface property. This 
dangling bonds are called interface states and make hard 
to modulate work function (WF) difference between 
metal and semiconductor or metal-alloy semiconductor 
and semiconductor because fermi level pinning (FLP) by 
charge neutrality level (CNL). Using methods to reduce 
influence of FLP, in general, segregation effect using ion 
implantation and insertion tunneling insulator are used. 
However, these methods make fabrication steps to 
complex, and, insertion tunneling insulator method can’t 
be achieved to metal-alloy semiconductor technique. 

We speculate that if the dangling bonds between the 
Ni-InGaAs and InGaAs layers are eliminated, then Rc 
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can be reduced. The dangling bonds can be eliminated by 
the forming gas annealing technique, which is a very 
simple and effective [11]. In this study, we form a Ni-
InGaAs layer using soak-type rapid thermal annealing 
(RTA) in vacuum, 2% H2 and 4% H2 ambient. We 
measure the current–voltage (I–V) characteristics in 
metal-semiconductor contact (Schottky contact) and 
specific contact resistivity (ρc) in circular transfer length 
method (CTLM) pattern [12] for specifying current 
improvement and reducing the contact resistance. 

II. EXPERIMENTAL 

Schottky contact and CTLM samples are made by epi-
InxGa1-xAs (x = 53%) on an InP substrate. Fig. 1 shows 
the process flow to fabricate Schottky contact and CTLM 
samples. In the pre-cleaning steps, acetone, isopropyl 
alcohol, and diluted ammonium hydroxide (NH4OH:H2O 
= 1:5) are used. After pre-cleaning, samples were soaked 
in ammonium sulfide solution ((NH4)2S:H2O = 1:5) to 
prevent re-oxidation of InGaAs substrate layer [7]. The 
lift-off method is used for metal patterning. Ni and TiN 
with thicknesses of 15 nm and 10 nm, respectively, are 
in-situ deposited using RF magnetron sputter. Further, 
samples are loaded in RTA equipment and annealed at 
300°C for 30 s after photoresist striping. After RTA, 
samples are soaked in hydrochloric acid for etching the 
remnant Ni and TiN. Finally, Schottky contact samples 
fabrication is finished by Al back metal deposition and 
CTLM samples are skipped back metal deposition step. 

III. RESULTS AND DISCUSSION 

In order to verify ρc reduction, we measured the I–V 
characteristics (Fig. 2) of the Schottky contact samples in 
the voltage range of -0.5 to +0.5 V. From Fig. 2, we 
observe that the 4% H2 sample exhibits 16% higher 
current density than the reference sample. This result can 
be attributed to change in the contact resistance of Ni–
InGaAs. Consequently, we measured the layer thickness, 
ρc and binding energies.We acquired the cross-sectional 
images of the Ni–InGaAs layers with the use of field-
emission scanning electron microscopy (FE-SEM). The 
three samples (reference, 2% H2, and 4% H2 samples) 
exhibit nearly identical layer thicknesses of 27.8 nm, as 
shown in Fig. 3. 

In the next phase of the study, we measured ρc at 
CTLM samples. The CTLM pattern comprised a fixed 
inner circle of 80-μm radius with the concentric gap 
space ranging from 8 to 64 µm in 8-µm steps. The 
specific contact resistance (ρc) was extracted by linear 
fitting of the total resistance. Consequently, we obtained 
ρc values of 1.24×10-5, 1.11×10-5, and 9.15×10-6 Ω•cm2 
for the reference, 2% H2, and 4% H2 samples, 
respectively. This result indicates that annealing with 
hydrogen-containing ambient gas forms an effective 
method that can reduce ρc between the Ni–InGaAs and 
InGaAs layers.  

Finally, we measured the binding energy at the 
interface between the Ni–InGaAs and InGaAs layers 
using X-ray photoelectron spectroscopy (XPS). Fig. 5 
shows the measured binding energies of Ni, In, As and 
Ga. This result indicates that the binding energy 

n-InGaAs, Si+ 1×10-18 cm-3

Pre-cleaning
- Acetone, IPA ,NH4OH : H2O (1:5)

Lift-off lithography

Metal deposition
- Ni/TiN [15/10 nm]

RTP, 300 °C, 30 sec
- Reference (vacuum)
- 2% H2 ambient
- 4% H2 ambient

Unreacted metal etch
- HCl : H2O (1:5)

PR strip
-Acetone, IPA

Back side metal deposition
- Al

IPA rinse

Surface passivation
- (NH4)2S : H2O (1:5)

 

n-InGaAs, Si+ 1×10-19 cm-3

Pre-cleaning
- Acetone, IPA ,NH4OH : H2O (1:5)

Lift-off lithography

Metal deposition
- Ni/TiN [15/10 nm]

RTP, 300 °C, 30 sec
- Reference (vacuum)
- 2% H2 ambient
- 4% H2 ambient

Unreacted metal etch
- HCl : H2O (1:5)

PR strip
-Acetone, IPA

IPA rinse

Surface passivation
- (NH4)2S : H2O (1:5)

 

(a) (b) 

Fig. 1. Overall process flow in fabrication of (a) Ni-InGaAs/n-
InGaAs Schottky contact samples, (b) circular transfer length 
method (CTLM) samples. 
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Fig. 2. I–V characteristics of reference (vacuum), 2% H2 and 
4% H2 samples. 
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increases with increase in the hydrogen content of the 
annealing gases. In this regard, S. J. Pearton suggested 
that hydrogen atoms are present in the H0 or H- states in 
n-type semiconductors [13].  

While hydrogen atoms combine easily with In or Ga, 
as shown in Fig. 5, they cannot diffuse easily into n-type 
semiconductors [14]. This indicates that the interface 
underwent dangling bonds elimination or that hydrogen 
combined with substrate elements at the interface region. 
Hence, we can expect that the carriers flow easily 
between the Ni-InGaAs and InGaAs interface by reduced 
defect like a mobility enhancing in hydrogenated a-Si 
[15]. 

In summary, our approach can significantly contribute 
to the further development of InGaAs-based n-
MOSFETs. 

 

IV. CONCLUSION 

In this study, we fabricated Ni–InGaAs alloy layers in 
Ni-InGaAs/n-InGaAs Schottky contact samples under 
three sets of ambient RTA conditions, vacuum 
(reference), 2% H2, and 4% H2 environments, in an 
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Fig. 3. Field-emission scanning electron microscopy (FE-SEM) cross-sectional analysis of (a) reference, (b) 2% H2, (c) 4% H2
samples. 
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Fig. 4. Total resistance as a function of gap space for circular 
transfer length method (CTLM) samples.  
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Fig. 5. Binding energies of (a) Ni, (b) In, (c) As, (d) Ga.  
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attempt to reduce the contact resistance ρc between Ni–
InGaAs and InGaAs. The 4% H2 sample exhibited a 50% 
higher current density than the reference sample and 
lowest ρc value of 9.15×10-6 Ω•cm2 among the other 
samples. We believe that our method can significantly 
contribute to improving the performance of InGaAs n-
MOSFETs. 
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