• Title/Summary/Keyword: GaAs quantum well

Search Result 215, Processing Time 0.022 seconds

Simulation of Optical Characteristics of 1.3 μm GaAs-Based GaAsSb/InGaAs and GaAsSb/InGaNAs Quantum Well Lasers for Optical Communication (광통신용 GaAs 기반 1.3 μm GaAsSb/InGaAs와 GaAsSb/InGaNAs 양자우물 레이저의 광학적특성 시뮬레이션)

  • Park, Seoung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Optical gain characteristics of $1.3{\mu}m$ type-II GaAsSb/InGaNAs/GaAs trilayer quantum well structures were studied using multi-band effective mass theory. The results were compared with those of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structures. In the case of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure, the energy difference between the first two subbands in the valence band is smaller than that of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure. Also, $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure shows larger optical gain than $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure. This means that GaAsSb/InGaNAs/GaAs system is promising as long-wavelength optoelectronic devices for optical communication.

Photoluminescence study in GaAs/AlGaAs multi-quantum well structure by hydrogen passivation (수소화 처리에 의한 GaAs/AIGaAs 다중양자우물의 PL 연구)

  • Park, Se-Ki;Lee, Cheon;Jung, Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.468-472
    • /
    • 1997
  • The effect of the surface state on the quantum efficiency of underlying GaAs/AlGaAs multi-quantum well(MQW) structures consisting of three GaAs quantum wells with different thickness, is studied by low temperature photoluminescence(PL). The structure was grown by molecular beam epitaxy(MBE) on (100) GaAs substrate. The thickness of three GaAs quantum wells was 3, 6 and 9 nm, respectively. The MQWs were placed apart from 50 nm AlGaAs edge-barriers including two inner-barriers with 15 nm in thickness. The samples used in this study were prepared with different growth temperatures. Particularly, the hydrogen passivation effect to the 9 nm quantum well located at near surface appeared much stronger than any others. Transition energy and optical gain related to the hydrogen passivation effects on the multi-quantum well structure was calculated by transfer matrix method.

  • PDF

Impact ionization rate of the highly-doped AlGaAs/GaAs quantum well (고준위 도핑된 AlGaAs/GaAs 양자 우물의 충돌 이온화율)

  • 윤기정;황성범;송정근;홍창희
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.4
    • /
    • pp.121-128
    • /
    • 1996
  • The impact ionization rate of thethighly-doped AlGaAs/GaAs quantum well structure is calculated, which is an important parameter ot design theinfrared detector APD and the novel neural device. In conjunction with ensemble monte carlo method and quantum mechanical treatment, we analyze the effects of the parameters of quantum well structure on the impact ionization rate. Since the number of the occupied subbands increases while the energy of the subbands decreases as the width of quantum well increases, the impact ionization rate increases in the range of th esmall well width but gradually the increament slows down and is finally saturated. Due to the effect of the energy of the injected electrons into the quantum well and the tunneling through the barrier, the impact ionization rate increases for the range of the small barrier width and decreases for the range of the large barrier width. Thus, there exists a barrier width to maximize the impact ionzation rate for a mole fraction x, and the barrier width moves to the larger vaue as the mole fraction x increases. The impact ionization rate is much more sensitive to the variation of the doping density than that of the other quantum well parameters. We found that there is a limit of the doping density to confine the electronics in the quantum well effectively.

  • PDF

Comparison of Quantum Wells based on InGaAs(P)/InP and InGa(Al)As/InAlAs Material Systems in View of Carrier Escape Times for High-Saturation-Optical-Power Electroabsorption Modulators

  • Kim, Kang-Baek;Shin, Dong-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.133-137
    • /
    • 2007
  • We compare electroabsorption modulators (EAMs) with multiple quantum wells (MQWs) based on InGaAs(P)/InP and InGa(Al)As/InAlAs material systems. We carefully choose the quantum-well structures so that the structures based on different material systems have similar band-offset energies and excition-peak wavelengths. Assuming the same light wavelength of $1.55{\mu}m$, we show the transfer functions of EAMs with each quantum-well structure and calculate the escape times of photogenerated charge carriers. As the heavy-hole escape time of the quantum well based on InGaAs(P)/InP is much longer than those of photogenerated charge carriers of InGa(Al)As/InAlAs, the EAM based on the InGa(Al)As/InAlAs material seems to be more suitable for high-optical-power operation.

Surface Photovoltage of $Al_{0.3}$$Ga_{0.7}$As/GaAs Multi-Quantum Well Structures ($Al_{0.3}$$Ga_{0.7}$As/GaAs 다중 양자 우물 구조의 표면 광전압에 관한 연구)

  • 이정열;김기홍;손정식;배인호;김인수;박성배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2000
  • We used the surface photovoltage spectroscopy(SPVS) for characterization of GaAs/Al\ulcornerGa\ulcornerAs multi-quantum well(MQW) structures grown by molecular beam epitaxy(MBE) method. Energy gap related transitions in GaAs and AlGaAs were observed. The Al composition(x=0.3) was determined by Sek's composition formula. Transition energies in MQW were determined using the differential surface photo-volatage spectroscopy)DSPVS) of the measured resonanced. In order to indentify the transitions, the experimentally observed energies were compared with results of the envelope function approximation for a rectangular quantum well. We have observed and interesting behavior of the temperature dependence(80K~300K) of the 11Hand 11L transition for sample.

  • PDF

Investigation of detection wavelength of Quantum Well Infrared-Photodetector

  • Hwang, S.H.;Lim, J.G.;Song, J.D.;Shin, J.C.;Heo, D.C.;Choi, W.J.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.257-261
    • /
    • 2015
  • We report on GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) that can cover the spectral range of $3.6-25{\mu}m$. One advantage of the GaAs QWIPs is the wavelength tenability as a function of their structural parameters. We have performed a systematic calculation on the detection wavelength of a typical $GaAs/Al_xGa_{1-x}As$ multi-quantum-well photodetector, with the aluminum mole fraction (x) of $Al_xGa_{1-x}As$ barrier in the range of 0.15-0.43 and the quantum-well width range from 30 to 60 $60{\AA}$. Design and fabrication of a QWIP based on $GaAs/Al_{0.23}Ga_{0.77}As$ structure with $37{\AA}$-thick well width has been carried out. The calculated operation wavelength of the QWIP is in a good agreement with the experimental data taken by photo response and activation energy calculation from thermal quenching of integrated photoluminescence.

Effect of rapid thermal annealing on InGaP/InGaAlP multiple quantum well structures grown by molecular beam epitaxy (MBE 성장 InGaP/InGaAlP 다중양자우물의 RTA 에 의한 PL 특성 변화)

  • Park, Gwang-Uk;Park, Chang-Yeong;Im, Jae-Mun;Lee, Yong-Tak
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.525-526
    • /
    • 2009
  • we investigated the effect of rapid thermal annealing (RTA) temperature on photoluminescence (PL) of 635 nm InGaP/InGaAlP multiple quantum well structure. RTA is performed with the quantum well structure with 5.5 nm of well width. The highest PL peak intensity is shown at 1 min. of RTA at $720^{\circ}C$ sample as 3 times higher as compared to the as-grown sample. The effect may be assigned to an expected reduction in number of nonradiative recombination centers in the quantum well.

  • PDF

Impact Ionization Rates of Electron in GaAs/AlGaAs Qunantum Well Using EMC Simulation (EMC Simulation을 이용한 GaAs/AlGaAs 양자 우물 내 전자의 충돌 이온화율)

  • 윤기정;홍창희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.221-225
    • /
    • 1994
  • We described the impact ionization rates of electron in GaAs/AlGaAs MQH(multi- quantum well) using EMC(ensenble Monte Carlo) simulation. Hot electron energy of injected into quantum well is increasing nearly liearly due to the applied electric field to the barrier of MQM inspite of various Al mole fraction in AlGaAs or barrier width. Impact ionization rates are decreasing exponentially by increasing Al mole fraction, and they have peak vague due to the barrier width.

Optical Characteristic of InAs Quantum Dots in an InGaAs/GaAs Well Structure (광학적 방법으로 측정된 양자우물 안의 InAs 양자점의 에너지 준위)

  • Nam H.D.;Kwack H.S.;Doynnette L.;Song J.D.;Choi W.J.;Cho W.J.;Lee J.I.;Cho Y.H.;Julien F.H.;Choe J.W.;Yang H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.209-215
    • /
    • 2006
  • We investigated the optical property and the electronic subband structure of InAs quantum dots in an InAsGa/GaAs well structure utilizing photoluminescence (PL), PL excitation (PLE) and near infrared transmission spectroscopy. From transmission and PLE spectra, we found three bound states in the InAs quantum dot and two bound states in InGaAs/GaAs quantum well, and correlated to the results of intersubband transitions observed in photocurrent spectrum.

Optimization of multiple-quantum-well structures in 1.55.$\mu$ InGaAsP/InGaAsP SL-MQW DFB-LD for high-speed direct modulation (고속직접변조를 위한 1.55.$\mu$. InGaAsP/InGaAsP SL-MQW DFB-LD의 양자우물구조의 최적화)

  • 심종인;한백형
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.60-73
    • /
    • 1997
  • By introducing a compressive-strained quanternary InGaAsP quantum-wells instead of a conventional ternary InGaAs quantum-wells in 1.55.mu.m DFB-LD, the lasing performances canb e improved and the problems caused by the thickness non-uniformity and the compositional abruptness among the hetero-interpaces canb e relaxed. In this paper, we investigated an iptimum InGaAsP/InGaAsP multiple-quantum-well(MQW) structure as an active layer in a direct-modulated 1.55.mu. DFB-LD from the view point of threshold current, chirping charcteristics, and resonance frequency. The optimum compressive-strained MQW structure was revealed as InGaAsP/InGaAsP structure with strain amount of about 1.2%, number of wells $N_{w}$ of 7, well width $L_{w}$ of 58.agns.. The threshold current density J of 500A/c $m^{2}$, the linewidth enhancement factor a of 1.8, and differential resonance frequency of d $f_{r}$/d(I-I)$^{1}$2/=2GHz/(mA)$^{1}$2/(atI=2 $I_{th}$) were expected in 1.55.mu.m .gamma./4-shifted DFB-LD with the cavity length of 400.mu.m long and kL value of 1.25. These values are considerably improved ones compared to those of 1.55um DFB-LD with InGaAs/InGaAsP MQW which have enhancement factor and the resonance frequence frequency by the detuning of lasing wavelength and gain-peak wavelength. It was found that the linewidth enhancement factor of 20% and differential resonance frequency of 35% without the degradation of the threshold current density could be enhanced in the range of -15nm~-20nm detuning which can be realized by controlling the thickness and Incomposition of InGaAsP well. well.and Incomposition of InGaAsP well. well.

  • PDF