• Title/Summary/Keyword: Ga-doped ZnO (GZO)

Search Result 90, Processing Time 0.032 seconds

Comparison of Ga-doped and Ag-doped ZnO Nanowire Gas-sensor Sensitivity and Selectivity

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.334-337
    • /
    • 2015
  • Pure ZnO, ZnO nanowires doped with 3 wt.% Ga (3GZO) and doped with 3 wt.% Ag (3SZO) were grown by a hot-walled pulse laser deposition (HW-PLD) technique. The optical and chemical properties of Ga and Ag doped nanowires was analyzed. Nanowires were determined to be under 200 nm in diameter and several μm in length. Change of significant resistance was observed and the gas detection sensitivities of ZnO, 3GZO and 3SZO nanawires were compared. The sensitivities of ZnO, 3GZO, and 3SZO nanowire sensors were measured at 300℃ for 1 ppm of ethanol gas at 97%, 48%, and 203%, respectively.

Effects of Doping Concentration on the Properties of Ga-doped ZnO Thin Films Prepared by RF Magnetron Sputtering (Ga의 도핑농도에 따른 ZnO 박막의 특성)

  • Kim, Hyoung Min;Ma, Dae Young;Park, Ki Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.984-989
    • /
    • 2012
  • We have investigated the structural, electrical and optical properties of Ga-doped ZnO (GZO) thin films prepared by RF magnetron sputtering with laboratory-made ZnO targets containing 1, 3, 5, 7 wt% of $Ga_2O_3$ powder as a doping source. The GZO thin films show the typical crystallographic orientation with c-axis regardless of $Ga_2O_3$ content in the targets. The $3,000{\AA}$ thick GZO thin films with the lowest resistivity of $7{\times}10^{-4}{\Omega}{\cdot}cm$ are obtained by using the GZO ($Ga_2O_3$= 5 wt%) target. Optical transmittance of all films shows higher than 80% at the visible region. The optical energy band gap for GZO films increases as the carrier concentration ($n_e$) in the film increases.

Comparison of Optical Properties of Ga-doped and Ag-doped ZnO Nanowire Measured at Low Temperature

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.262-264
    • /
    • 2014
  • Pristine ZnO, 3 wt.% Ga-doped (3GZO) and 3 wt.% Ag-doped (3SZO) ZnO nanowires (NWs) were grown using the hot-walled pulse laser deposition (HW-PLD) technique. The doping of Ga and Ag in ZnO NWs was observed by analyzing the optical and chemical properties. We optimized the synthesis conditions, including processing temperature, time, gas flow, and distance between target and substrate for the growth of pristine and doped ZnO NWs. The diameter and length of pristine and doped ZnO NWs were controlled under 200 nm and several ${\mu}m$, respectively. Low temperature photoluminescence (PL) was performed to observe the optical property of doped NWs. We clearly observed the shift of the near band edge (NBE) emission by using low temperature PL. In the case of 3GZO and 3SZO NWs, the center photon energy of the NBE emissions shifted to low energy direction using the Burstein Moss effect. A strong donor-bound exciton peak was found in 3 GZO NWs, while an acceptor-bound exciton peak was found in 3SZO NWs. X-ray photoelectron spectroscopy (XPS) also indicated that the shift of binding energy was mainly attributed to the interaction between the metal ion and ZnO NWs.

Properties of Sputtered Ga Doped ZnO Thin Film Under Various Reaction Gas Ratio (Reaction Gas 변화에 따라 스퍼터된 Ga Doped ZnO 박막의 특성)

  • Kim, Jong-Wook;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.289-293
    • /
    • 2013
  • We have studied structural, optical, and electrical properties of the Ga-doped ZnO (GZO) thin films being usable in transparent conducting oxides. The GZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of GZO for transparent conducting oxides, the Ar gas in sputtering process was varied as 40, 60, 80 and 100 sccm, respectively. As reaction gas decreased, the crystallinity of GZO thin film was increased, the optical bandgap of GZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in reaction gas. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with decreasing reaction gas. The structural, optical, and electrical properties of the GZO thin films were affected by Ga dopant content in GZO thin film.

The Structural Investigation for the Enhancement of Electrical Conductivity in Ga-doped ZnO Targets

  • Yun, Sang-Won;Seo, Jong-Hyeon;Seong, Tae-Yeon;An, Jae-Pyeong;Gwon, -Hun;Lee, Geon-Bae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.2-243.2
    • /
    • 2011
  • ZnO materials with a wide band gap of approximately 3.3 eV has been used in transparent conducting oxides (TCO) due to exhibitinga high optical transmission, but its low conductivity acts as role of a limitation for conducting applications. Recently, Ga or Al-doped ZnO (GZO, AZO) becomes transparent conducting materials because of high optical transmission and excellent conductivity. However, the fundamental mechanism underlying the improvement of electrical conductivity of the GZO is still the subject of debate. In this study, we have fully investigated the reasons of high conductivity through the characterization of plane defects, crystal orientation, doping contents, crystal structure in Zn1-xGaxO (x=0, 3, 5.1, 5.6, 6.6 wt%). We manufactured Zn1-xGaxO by sintering ZnO and Ga2O3 powers, having a theoretical density of 99.9% and homogeneous Ga-dopant distribution in ZnO grains. The GZO containing 5.6 wt% Ga represents the highest electrical conductivity of $7.5{\times}10^{-4}{\Omega}{\cdot}m$. In particular, many twins and superlattices were induced by doping Ga in ZnO, revealed by X-ray diffraction measurements and TEM (transmission electron microscopy) observations. Twins developed in conventional ZnO crystal are generally formed at (110) and (112) planes, but we have observed the twins at (113) plane only, which is the first report in ZnO material. Interestingly, the superlattice structure was not observed at the grains in which twins are developed and the opposite case was true. This structural change in the GZO resulted in the difference of electrical conductivity. Enhancement of the conductivity was closely related to the extent of Ga ordering in the GZO lattice. Maximum conductivity was obtained at the GZO with a superlattice structure formed ideal ordering of Ga atoms.

  • PDF

Effect of Annealing on the Structural, Electrical and Optical Characteristics of Ga-doped ZnO(GZO)films (Ga doped ZnO 박막의 열처리 조건에 따른 구조 및 전기적 특성에 관한 연구)

  • Oh, Su-Young;Kim, Eung-Kwon;Lee, Tae-Yong;Kang, Hyun-Il;Kim, Bong-Seok;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.776-779
    • /
    • 2007
  • In this study we present the effect of annealing temperatures on the structural, electrical and optical characteristics of Ga-doped ZnO (GZO) films. GZO target is deposited on coming 7059 glass substrates by DC sputtering. and then GZO films are annealed at temperatures of 400, 500, $600^{\circ}C$ in air ambient for 20 min. in this case of as-grown film, it shows the resistivity of $6{\times}10^{-1}{\Omega}{\cdot}cm$ and transmittance under 85%, whereas the electrical and optical properties of film annealed at $500^{\circ}C$ are enhanced up to $1.9{\times}10^{-3}{\Omega}{\cdot}cm$ and 90%, respectively.

Characterization of ZnO Thin Films and Ga doped ZnO Thin Films Post Annealing for Transparent Conducting Oxide Application (투명전극 응용을 위한 ZnO박막과 Ga 도핑 된 ZnO박막의 성장 후 열처리에 따른 특성분석)

  • Jang, Jae-Ho;Bae, Hyo-Jun;Lee, Ji-Su;Jung, Kwang-Hyun;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.567-571
    • /
    • 2009
  • Polycrystalline ZnO and Ga doped ZnO (GZO) films are deposited on glass substrate by RF magnetron sputtering at room temperature. The characteristics of ZnO and GZO films are investigated with X-ray diffraction measurement, UV-VIS-NIR spectrophotometer $(250{\sim}1200nm)$ and hall measurement. The post-growth thermal treatment of these films is carried out in N2 ambient at $500^{\circ}C$ for 30 min and an hour. ZnO and GZO films have different changing behavior of structural and optical properties by annealing. To use transparent conductive films for solar cell, films should have not only high transmittance but also good electrical property. Although as deposited GZO films have electrical properties than ZnO films, GZO films have not good transmittance properties. Consequently, we succeed that the high transmittance of GZO films is improved by annealing process.

Effect of Ga-doping on the properties of ZnO films grown on glass substrate at room temperature by radio frequency magnetron sputtering (RF 마그네트론 스퍼터링 방법으로 상온에서 유리기판 위에 성장시킨 ZnO의 성질에 미치는 Ga 도핑 효과)

  • Kim, G.C.;Lee, J.S.;Lee, S.K.;Kim, D.H.;Lee, S.H.;Moon, J.H.;Jeon, M.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • We present the effect of Ga-doping on the electrical, structural and optical properties of ZnO layers with a thickness of ${\sim}500nm$ deposited on glass substrates. Polycrystalline ZnO and Ga-doped ZnO (GZO) layers were deposited by radio frequency (rf) magnetron sputtering at room temperature. Based on the X-ray diffraction (XRD) and transmission electron microscopy (TEM) data, the crystalline quality of Ga-doped ZnO film was improved and GZO film has a preferred orientation along with the (002) crystal direction. The transmittance of the GZO film was enhanced by 10% in the visible region from that of the ZnO film. From photoluminescence (PL) data, the ratio of intensity of near band edge (NBE) emission to deep level (DL) emission was as high as 2.65:1 and 1.27:1 in the GZO and ZnO films, respectively. The res istivities of GZO and ZnO films were measured to be 1.27 and 1.61 $\Omega{\cdot}cm$, respectively. The carrier concentrations of ZnO and GZO film were approximately 1018 and 1020 $cm^2$/Vs, respectively. Based on our experimental results, the Ga-doping improves the electrical, structural and optical properties of ZnO film with potential application.

Effects of Doping Concentrations and Annealing Temperatures on the Electrical and Optical Properties of Ga-doped ZnO Thin Films by Sol-gel Method (Sol-gel 법으로 제작한 Ga-doped ZnO 박막의 도핑 농도와 열처리 온도가 전기적 및 광학적 특성에 미치는 효과)

  • Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.558-564
    • /
    • 2012
  • We fabricated Ga doped ZnO (GZO) thin films on the glass substrate (Eagle 2000) with various of Ga doping concentration and annealing temperatures using sol-gel method, electrical and optical properties were investigated. When the GZO thin films doped with 1 mol% of Ga and annealed at $600^{\circ}C$, the excellent (002) orientation was observed. In the results of Hall measurement, carrier concentration decreased and resistivity increased due to segregation effect with increasing of the Ga doping concentration. The largest carrier concentration and lowest resistivity were $9.13{\times}10^{18}cm^{-3}$ and $0.87{\Omega}cm$, respectively, in the GZO thin films doped with 1 mol% Ga and annealed at $600^{\circ}C$. All films is higher than 80 % in the visible light region. Energy band gap narrowing due to Burstein-Moss effect was observed with increasing of Ga doping concentration from 1 to 4 mol%.

Sensing Properties of Ga-doped ZnO Nanowire Gas Sensor

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.78-81
    • /
    • 2015
  • Pure ZnO and ZnO nanowires doped with 3 wt.% Ga (‘3GZO’) were grown by pulsed laser deposition in a furnace system. The doping of Ga in ZnO nanowires was analyzed by observing the optical and chemical properties of the doped nanowires. The diameter and length of nanowires were under 200 nm and several ${\mu}m$, respectively. Changes of significant resistance were observed and the sensitivities of ZnO and 3GZO nanowires were compared. The sensitivities of ZnO and 3GZO nanowire sensors measured at 300℃ for 1 ppm of ethanol gas were 97% and 48%, respectively.