• 제목/요약/키워드: Ga doping

검색결과 224건 처리시간 0.031초

전기화학적 방법을 이용한 Ga-ZnO film (Ga-ZnO film using electrochemical method)

  • 심원현;김영태;박미영;임동찬;이규환;정용수
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 추계학술대회 초록집
    • /
    • pp.151-151
    • /
    • 2009
  • ZnO 박막은 큰 밴드 갭 및 가시광 영역에서 높은 광투과성을 가지며, 제조조건에 따라 비저항의 범위가 폭넓게 변화하므로 태양전지, 평판 디스플레이의 투명 전극뿐만 아니라 음향공전기, 바리스터 등에 이용되고 있다. ZnO 박막의 전도성을 향상시키기 위해서 일반적으로 Al, Ga, Ti, In, B, H(n-type), 등과 N, As(p-type)의 도펀트를 사용한다. 본 연구에서는 전기화학적인 방법을 사용하여 ITO/glass위에 ZnO film에 농도에 따른 Ga을 doping 하여 전기전도성 향상과 밴드갭을 넓힘으로서 전자의 recombination을 방지하여 유기태양전지의 효율을 높이는데 목적을 두었다.

  • PDF

Spin-polarization and x-ray magnetic circular dichroism in GaAs

  • Zohar, S.;Ryan, P.J.;Kim, J.W.;Keavney, D.J.
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1182-1184
    • /
    • 2018
  • The combination of angular spin momentum with electronics is a promising successor to charge-based electronics. The conduction bands in GaAs may become spin-polarized via optical spin pumping, doping with magnetic ions, or induction of a moment with an external magnetic field. We investigated the spin populations in GaAs with x-ray magnetic circular dichroism for each of these three cases. We find strong anti-symmetric lineshapes at the Ga $L_3$ edge indicating conduction band spin splitting, with differences in line width and amplitude depending on the source of spin polarization.

Influence of Charge Transport of Pt-CdSe-Pt Nanodumbbells and Pt Nanoparticles/GaN on Catalytic Activity of CO Oxidation

  • Kim, Sun Mi;Lee, Seon Joo;Kim, Seunghyun;Kwon, Sangku;Yee, Kiju;Song, Hyunjoon;Somorjai, Gabor A.;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.164-164
    • /
    • 2013
  • Among multicomponent nanostructures, hybrid nanocatalysts consisting of metal nanoparticle-semiconductor junctions offer an interesting platform to study the role of metal-oxide interfaces and hot electron flows in heterogeneous catalysis. In this study, we report that hot carriers generated upon photon absorption significantly impact the catalytic activity of CO oxidation. We found that Pt-CdSe-Pt nanodumbbells exhibited a higher turnover frequency by a factor of two during irradiation by light with energy higher than the bandgap of CdSe, while the turnover rate on bare Pt nanoparticles didn't depend on light irradiation. We also found that Pt nanoparticles deposited on a GaN substrate under light irradiation exhibit changes in catalytic activity of CO oxidation that depends on the type of doping of the GaN. We suppose that hot electrons are generated upon the absorption of photons by the semiconducting nanorods or substrates, whereafter the hot electrons are injected into the Pt nanoparticles, resulting in the change in catalytic activity. We discuss the possible mechanism for how hot carrier flows generated during light irradiation affect the catalytic activity of CO oxidation.

  • PDF

유한 차분법을 이용한 MODFET의 이차원적 해석 (Two-Dimensional Analysis of the Characteristics at Heterojunction of MODFET Using FDM)

  • 정학기;이문기;김봉렬
    • 대한전자공학회논문지
    • /
    • 제25권11호
    • /
    • pp.1373-1379
    • /
    • 1988
  • 본 연구에서는 FDM(finite difference method)을 이용한 수치적 방법을 사용하여 MODFET (MO-dulation doped FET)의 전위 분포와 전자 밀도를 이차원적으로 해석하였다. 일차원적 해석 방법에서는 MODFET의 게이트 부분만을 계산하는 반면, 이차원적 해석 방법은 소오스와 드레인 부분도 계산해줌으로써 일차원적 해석 방법에서 무시되는 기생 효과(parasitic effect)를 고려하여 더 정확한 해석이 가능하였다. 결과로서 스페이스(spacer) 두께와 (n)AlGaAs층의 도핑 농도의 변화에 따른 채널내에서 2DEG(2dimensional electron gas)의 단위 면적에 대한 밀도와의 관계를 정량적으로 제시하였으며 스페이서의 두께가 작아지거나 (n)AlGaAs 층의 도핑 농도가 커질수록 MODFET 채널 내의 전자 밀도가 증가함을 확인하였다.

  • PDF

Optical properties of a-plane InGaN/GaN multi-quantum wells with green emission

  • Song, Hoo-Young;Kim, Eun-Kyu;Lee, Sung-Ho;Hwang, Sung-Min
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.172-172
    • /
    • 2010
  • In the area of optoelectronic devices based on GaN and related ternary compounds, the two-dimensional system like as quantum wells (QWs) has been investigated as an effective structure for improving the light-emitting efficiency. Generally, the quantum well active regions in III-nitride light-emitting diodes grown on conventional c-plane sapphire substrates have critical problems given by the quantum confined Stark effect (QCSE) due to the effects of strong piezoelectric and spontaneous polarizations. However, the QWs grown on nonpolar templates are free from the QCSE since the polar-axis lies within the growth plane of the template. Also the unique characteristic of linear polarized light emission from nonpolar QW structures is attracting attentions because it is proper to the application of back-light units of liquid crystal display. In this study, we characterized optical properties of the a-plane InGaN/GaN QW structures by temperature-dependent photoluminescence (TDPL) measurements. From the photoluminescence (PL) spectrum measured at 300 K, green emission centered at 520 nm was observed for the QW region. Since indium incorporation on nonpolar QWs is lower than that on c-plane, this high indium-doping on a-plane InGaN QWs is not common. Therefore, the effect of high indium composition on optical properties in a-plane InGaN QWs will be extensively studied.

  • PDF

Design optimization of GaN diode with p-GaN multi-well structure for high-efficiency betavoltaic cell

  • Yoon, Young Jun;Lee, Jae Sang;Kang, In Man;Lee, Jung-Hee;Kim, Dong-Seok
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1284-1288
    • /
    • 2021
  • In this work, we propose and design a GaN-based diode with a p-doped GaN (p-GaN) multi-well structure for high efficiency betavoltaic (BV) cells. The short-circuit current density (JSC) and opencircuit voltage (VOC) of the devices were investigated with variations of parameters such as the doping concentration, height, width of the p-GaN well region, well-to-well gap, and number of well regions. The JSC of the device was significantly improved by a wider depletion area, which was obtained by applying the multi-well structure. The optimized device achieved a higher output power density by 8.6% than that of the conventional diode due to the enhancement of JSC. The proposed device structure showed a high potential for a high efficiency BV cell candidate.

낮은 에너지로 실리콘에 이온 주입된 분포와 열처리된 인듐의 거동에 관한 시뮬레이션과 모델링 (Modeling and Simulation on Ion Implanted and Annealed Indium Distribution in Silicon Using Low Energy Bombardment)

  • 정원채
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.750-758
    • /
    • 2016
  • For the channel doping of shallow junction and retrograde well formation in CMOS, indium can be implanted in silicon. The retrograde doping profiles can serve the needs of channel engineering in deep MOS devices for punch-through suppression and threshold voltage control. Indium is heavier element than B, $BF_2$ and Ga ions. It also has low coefficient of diffusion at high temperatures. Indium ions can be cause the erode of wafer surface during the implantation process due to sputtering. For the ultra shallow junction, indium ions can be implanted for p-doping in silicon. UT-MARLOWE and SRIM as Monte carlo ion-implant models have been developed for indium implantation into single crystal and amorphous silicon, respectively. An analytical tool was used to carry out for the annealing process from the extracted simulation data. For the 1D (one-dimensional) and 2D (two-dimensional) diffused profiles, the analytical model is also developed a simulation program with $C^{{+}{+}}$ code. It is very useful to simulate the indium profiles in implanted and annealed silicon autonomously. The fundamental ion-solid interactions and sputtering effects of ion implantation are discussed and explained using SRIM and T-dyn programs. The exact control of indium doping profiles can be suggested as a future technology for the extreme shallow junction in the fabrication process of integrated circuits.

이종접합 Gate 구조를 갖는 수평형 NiO/Ga2O3 FET의 전기적 특성 연구 (Electrical Characterization of Lateral NiO/Ga2O3 FETs with Heterojunction Gate Structure)

  • 이건희;문수영;이형진;신명철;김예진;전가연;오종민;신원호;김민경;박철환;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제36권4호
    • /
    • pp.413-417
    • /
    • 2023
  • Gallium Oxide (Ga2O3) is preferred as a material for next generation power semiconductors. The Ga2O3 should solve the disadvantages of low thermal resistance characteristics and difficulty in forming an inversion layer through p-type ion implantation. However, Ga2O3 is difficult to inject p-type ions, so it is being studied in a heterojunction structure using p-type oxides, such as NiO, SnO, and Cu2O. Research the lateral-type FET structure of NiO/Ga2O3 heterojunction under the Gate contact using the Sentaurus TCAD simulation. At this time, the VG-ID and VD-ID curves were identified by the thickness of the Epi-region (channel) and the doping concentration of NiO of 1×1017 to 1×1019 cm-3. The increase in Epi region thickness has a lower threshold voltage from -4.4 V to -9.3 V at ID = 1×10-8 mA/mm, as current does not flow only when the depletion of the PN junction extends to the Epi/Sub interface. As an increase of NiO doping concentration, increases the depletion area in Ga2O3 region and a high electric field distribution on PN junction, and thus the breakdown voltage increases from 512 V to 636 V at ID =1×10-3 A/mm.

유기 금속 화학 증착법(MOCVD)의 희석된 SiH4을 활용한 Si-Doped β-Ga2O3 에피 성장 (Growth of Si-Doped β-Ga2O3 Epi-Layer by Metal Organic Chemical Vapor Deposition U sing Diluted SiH4)

  • 김형윤;김선재;천현우;이재형;전대우;박지현
    • 한국재료학회지
    • /
    • 제33권12호
    • /
    • pp.525-529
    • /
    • 2023
  • β-Ga2O3 has become the focus of considerable attention as an ultra-wide bandgap semiconductor following the successful development of bulk single crystals using the melt growth method. Accordingly, homoepitaxy studies, where the interface between the substrate and the epilayer is not problematic, have become mainstream and many results have been published. However, because the cost of homo-substrates is high, research is still mainly at the laboratory level and has not yet been scaled up to commercialization. To overcome this problem, many researchers are trying to grow high quality Ga2O3 epilayers on hetero-substrates. We used diluted SiH4 gas to control the doping concentration during the heteroepitaxial growth of β-Ga2O3 on c-plane sapphire using metal organic chemical vapor deposition (MOCVD). Despite the high level of defect density inside the grown β-Ga2O3 epilayer due to the aggregation of random rotated domains, the carrier concentration could be controlled from 1 × 1019 to 1 × 1016 cm-3 by diluting the SiH4 gas concentration. This study indicates that β-Ga2O3 hetero-epitaxy has similar potential to homo-epitaxy and is expected to accelerate the commercialization of β-Ga2O3 applications with the advantage of low substrate cost.