• Title/Summary/Keyword: GSM band

Search Result 141, Processing Time 0.029 seconds

Design of Fabrication of a Chip Antenna for DualB and Mobile Phone Application (듀얼밴드 휴대폰 응용을 위한 Chip 안테나 설계 및 제작)

  • Ko Young-hyuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1541-1547
    • /
    • 2005
  • In this paper, Dualband internal antenna for GSM/DSC handset is proposed. The antenna has a size of about $38mm{\times}90mm{\times}1mm$, giving a total mobile phone PCB for support and fold type patch of about $30mm{\times}8mm{\times}3.2mm$. This antenna characteriatic facilitates the fine-tuning of the two operating frequencies of 909MHz and 1762MHz in the dualband design. The measured radiation pattern in the E-plane and H-plane for operating frequencies of 909MHz and 1762MHz is compared and analyzed. The designed and fabricated two band internal antenna for GSM/DSC handset have a gain between 0dBi and 2.0dBi at all bands. Also, the electric firld distribution and directivity on human head caused by portable phone is analyzed. An analysis model is composed of a human head model and the antenna mounted on the same ground plane as portable telephone size.

Non-Foster Matching Circuit Design to Improve VHF- and UHF-Band Small Antenna Impedance Matching (VHF 및 UHF 대역 소형 안테나 매칭성능 개선을 위한 비 포스터 정합회로 설계)

  • Go, Jong-Gyu;Chung, Jae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.159-166
    • /
    • 2018
  • Herein, a non-Foster matching circuit is designed to improve the impedance matching characteristics of small antennas in the VHF and UHF bands. The proposed non-Foster circuit is designed to operate with negative capacitance in a wide frequency band from 50 MHz to 1,000 MHz for use in various communication bands. To ensure the stability of the non-Foster circuit with conditional stability, the open-circuit stability condition of Linvill was satisfied, and the circuit was fabricated using the FR-4 substrate. The fabricated non-Foster circuit was combined with a small antenna to verify its performance by measuring the return loss and received power in the FM, DMB, and GSM bands. The measured return loss was improved from -6 dB to -30 dB, and the measured received power was improved from 0.5 dBm to 5.2 dBm.

Multi-Band Antenna Using Folded Monopole Line and Log-Periodic Structure (폴디드 모노폴 선로가 부착된 대수주기 구조를 이용한 다중대역 안테나)

  • Lee, hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.142-146
    • /
    • 2014
  • In this paper, an antenna which has quad band in GSM/DCS/PCS/Bluetooth is proposed. This structure is designed with miniaturization for wide band characteristic based on monopole antenna and log-periodic toothed trapezoid patch antenna which has slots. To achieve multi-bandwidth is used the microstrip line on the substrate. An antenna size is $35mm{\times}20mm$ on FR-4(${\varepsilon}r=4.4$) ground substrate of $35mm{\times}75mm{\times}1mm$ size. And proposed antenna is satisfied with impedance bandwidth(VSWR ${\leq}$ 3). The simulated maximum radiation gain is 1.92 dBi, 3.26 dBi, 3.97 dBi at the center frequency of 0.92 GHz, 1.97 GHz, 2.45 GHz, respectively.

Branch Loop Antenna for the Mobile Handset (휴대 단말기용 브랜치 루프안테나)

  • Son, Taeho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.58-65
    • /
    • 2013
  • It's introduced a BLA(Branch Loop Antenna) that is modified from conventional loop, and verified antenna performances for applying to mobile handset. Branch elements are added to a rectangular loop, and low resonance is obtained by the length of the branch line. When resonance frequency of a single loop is 2.5GHz, BLA had near 900 MHz under the same antenna size. Multiple resonances are established by the locations of branch connection and their lengths. By the implementation and measurement for the dual band BLA, it's showed 75MHz -10dB bandwidth and -3.03~-1.46dBi average gains with 49.73~71.39% efficiencies at GSM900 band, and 90MHz -6dB bandwidth and -8.14~-2.17dBi average gains with 15.34~60.62% efficiencies at DCS1900 band. And H-plane radiation patterns were omni-directional. These performances are good for the mobile handset antenna.

Multi-Band Internal Chip Antenna Using Multi-Layer Substrate for Mobile Handset (Multi-Layer 구조를 사용한 다중 대역 내장형 칩 안테나)

  • Cho, Sang-Hyeok;Cho, Il-Hoon;Lee, In-Young;Pyo, Seong-Min;Baik, Jung-Woo;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.778-784
    • /
    • 2008
  • In this paper, a chip antenna using multi-layer configuration for multi-band operation, such as GSM, DCS, pcs, WCDMA, and Mobile WiMAX for 2.3 GHz is proposed. This proposed antenna is a PIFA structure with multi-layer configuration fabricated on R04003 substrate(${\varepsilon}_r=3.4$) and its size is $22{\times}5.5{\times}4.0\;mm^3$. Multi-layer structure can effectively reduce the size of an antenna from a reuse of air-space and can achieve broad bandwidth due to decrement of parallel capacitances from the insertion air-gap to the middle layer. The proposed antenna has a broadband operation by the high order resonance modes and the resonance at the top layer. The measured bandwidths with over 45 % radiation efficiency are 80 MHz($880{\sim}960\;MHz$) at the lower band and 690 MHz($1,710{\sim}2,400\;MHz$) at the higher band.

Effects of Radio Frequency Electromagnetic Fields Emitted by WCDMA Mobile Phones on Pacemakers and ICDs (WCDMA 휴대전화 전자파가 인공심장 박동기 및 이식형 제세동기에 미치는 영향)

  • Chung, Jai Won;Choi, Soo Beom;Park, Jee Soo;Kim, Deok Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.148-154
    • /
    • 2015
  • Reports show that global system for mobile communication (GSM) mobile phones, or two-generation (2G) mobile phones, could affect functions of pacemakers and implantable cardioverter defibrillators (ICDs). In this study, we evaluated the effects of radio frequency electromagnetic fields (RF-EMFs) emitted by wideband code division multiple access (WCDMA) mobile phones, which were third-generation (3G) mobile phones, on pacemakers and ICDs. Five pacemakers and three ICDs were subjected to in-vitro test using a ECG simulator. We used a WCDMA module (average power : 0.25 W, frequency band : 1950 MHz) instead of a real WCDMA mobile phone. To assess the effects of the WCDMA module on pacemakers and ICDs, each implantable device was placed in close proximity (within 3 mm) to the WCDMA module for 5 min. As a result, no effects were observed on the five pacemakers and three ICDs for the RF-EMFs emitted by the WCDMA module. Because WCDMA mobile phones have the higher frequency band (1800-2200 MHz) and lower power output (0.01-0.25 W) than GSM moboile phone, the RF-EMFs emitted by WCDMA mobile phones do not affect patients with pacemaker or ICD.

Design and Implementation of Internal Multi-Band Folded Monopole Antenna for Mobile Handset Applications

  • Yoo, Joo-Bong;Yang, Woon-Geun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.630-634
    • /
    • 2010
  • In this paper, we designed and fabricated a multi-band folded monopole antenna for mobile handsets that can be used for multiple services. The proposed antenna, with a small size of $28.060{\times}12.665{\times}5.035mm^3$ can provide sufficient bandwidth to cover the GSM900 (Global System for Mobile Communications: 880-960 MHz), DCS (Digital Cellular System: 1710-1880 MHz), K-PCS (Korea-Personal Communication Service: 1750-1870 MHz), Wibro (2300-2390 MHz) and Bluetooth (2400-2483 MHz) bands.

Design and Implementation of Internal Multi-Band Monopole Antenna for Mobile Phones

  • Yang, Woon-Geun;Cai, Ling Zhi;Yang, Cheol-Yong
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.339-344
    • /
    • 2011
  • In this paper, we proposed an internal multi-band monopole antenna for mobile phone that can be used for smart phones. The proposed antenna has a small volume of $38{\times}8.5{\times}5\;mm^3$, ground size is $100{\times}60\;mm^2$, and covers the GSM900 (Global System for Mobile communications : 880-960 MHz), DCS (Digital Communications System : 1710-1880 MHz), K-PCS (Korea-Personal Communications Service : 1750-1870 MHz), US-PCS (US Personal Communications Service : 1850-1990 MHz), Bluetooth (2400-2483 MHz), Wibro (2300-2390 MHz) and WLAN (Wireless Local Area Network : 2400-2483.5 MHz) bands. The measured peak gains of the implemented antenna are 1.15 dBi at 920 MHz, 3.58 dBi at 1795 MHz, 3.46 dBi at 1810 MHz, 2.91 dBi at 1920 MHz, 5.18 dBi at 2345 MHz, 3.37 dBi at 2442 MHz.

Hybrid MIMO Antenna Using Interconnection Tie for Eight-Band Mobile Handsets

  • Lee, Wonhee;Park, Mingil;Son, Taeho
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.185-193
    • /
    • 2015
  • In this paper, a hybrid multiple input multiple output (MIMO) antenna for eight-band mobile handsets is designed and implemented. For the MIMO antenna, two hybrid antennas are laid symmetrically and connected by an interconnection tie, thereby enabling complementary operation. The tie affects both the impedance and radiation characteristics of each antenna. Further, printed circuit board (PCB) embedded type is applied to the antenna design. To verify the results of this study, we designed eight bands-LTE class 12, 13, and 14, CDMA, GSM900, DCS1800, PCS, and WCDMA-and implemented them on a bare board the same size as the real board of a handset. The voltage standing wave ratio (VSWR) is within 3:1 over the entire design band. Antenna isolation is less than -15 dB at the lower band, and -12 dB at the WCDMA band. Envelope correlation coefficient (ECC) of 0.0002-0.05 is obtained for all bands. The average gain and efficiency are measured to range from -4.69 dBi to -2.88 dBi and 33.99% to 51.5% for antenna 1, and -4.74 dBi to -2.97 dBi and 33.45% to 50.49% for antenna 2, respectively.

Frequency Reconfigurable Antenna for Multi Mode & Multi Band (MMMB) Communication Systems (셀룰러 및 커낵티비티 대역 통합용 동시동작모드 주파수 재구성 안테나)

  • Park, Se-Hyun;Yang, Chan-Woo;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1170-1174
    • /
    • 2009
  • Two frequency-reconfigurable antennas have been designed and combined in a space with limited volume, i.e., 40mm ${\times}$ 20mm ${\times}$ 6mm. Each antenna can be reconfigured to operate at different frequency bands depending on the state of an embedded switch, which is implemented using a PIN diode. The first antenna can be switched between 0.82GHz ${\sim}$ 0.96GHz band (GSM/ CDMA) and 1.7GHz ${\sim}$ 2.17GHz band (DCS/ PCS/ WCDMA), which are cellular bands. The second antenna can be switched between 3.4GHz ${\sim}$ 3.6GHz band (mWiMax) and 2.3GHz ${\sim}$ 2.5GHz, 5.15GHz ${\sim}$ 5.35GHz bands (WiBro/ WLAN 11a/b/g/n), which are connectivity bands. The proposed combined antenna operates both over cellular bands and connectivity bands concurrently. The choice of the operation bands is made independently by the states of the two switches.