• Title/Summary/Keyword: GSH Level

Search Result 436, Processing Time 0.025 seconds

Effects of Hyaluronidase during In Vitro Maturation on Maturation and Developmental Competence in Porcine Oocytes

  • Jeon, Ye-Eun;Hwangbo, Yong;Cheong, Hee-Tae;Park, Choon-Keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.86-92
    • /
    • 2019
  • The aim of this study was to investigate effects of hyaluronidase during IVM on oocyte maturation, oxidative stress status, expression of cumulus expansion-related (PTX, pentraxin; GJA1, gap junction protein alpha 1; PTGS2, prostaglandin-endoperoxide synthase 2) and fatty acid metabolism-related (FADS1, delta-6 desaturase; FADS2, delta-5 desaturase; PPARα, peroxisome proliferator-activated receptor-alpha) mRNA, and embryonic development of porcine oocytes. The cumulus-oocyte complexes (COCs) were incubated with 0.1 mg/mL hyaluronidase for 44 h. Cumulus expansion was measured at 22 h after maturation. At 44 h after maturation, nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured. Gene expression in cumulus cells was analyzed using real time PCR. The cleavage rate and blastocyst formation were evaluated at Day 2 and 7 after insemination. In results, expansion of cumulus cells was suppressed by treatment of hyaluronidase at 22 h after maturation. Intracellular GSH level was reduced by hyaluronidase treatment (p < 0.05). On the other hand, hyaluronidase increased ROS levels in oocytes (p < 0.05). Only PTGS2 mRNA was enhanced in COCs by hyaluronidase (p < 0.05). Population of oocytes reached at metaphase II stage was higher in control group than hyaluronidase treated group (p < 0.05). Both of cleavage rate and blastocyst formation were higher in control group than hyaluronidase group (p < 0.05). Our present results showed that developmental competence of porcine oocytes could be reduce by hyaluronidase via inducing oxidative stress during maturation process and it might be associated with prostaglandin synthesis. Therefore, we suggest that suppression of cumulus expansion of COCs could induce oxidative stress and decrease nuclear maturation via reduction of GSH synthesis and it caused to decrease developmental competence of mammalian oocytes.

Anti-Oxidative Effect of Seungyangikki-tang Decoction in Spleen, Pancreas and Stomach Cells of SD Rats (승양익기탕(升陽益氣湯) 전탕액이 노화쥐의 비장, 췌장, 위장 세포의 항산화능에 미치는 영향)

  • Lee, Joo-Yong;Ahn, Taek-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.22 no.2
    • /
    • pp.82-92
    • /
    • 2010
  • 1. Objectives: The purpose of this study is to investigate the anti-aging and anti-oxidative effects of Seungyangikki-tang decoction(SY) in spleen, pancreas and stomach cells of Sprague-Dawley(SD) rats. 2. Methods: This experiment was used by the tissue of spleen, pancreas and stomach cells of 6, 52 and 68 weeks old SD rats. We devided each group by three. One group as normal group was non-treated cells, another group as control group was saline-treated cells, and the other group as experimental group was SY treated cells. After culture for 48 hours, each groups measured the level of SOD, GSH, MDA and NO in the tissue of kidney, bladder and spleen cells. 3. Results and Conclusions: SOD activity was significantly increased in spleen cell of 6, 68w-SY group, pancreas cell of 52,68w-SY group and in stomach cell of 52w-SY group compared with those of the control groups. GSH concentration was significantly increased in spleen cell of 6,68w-SY group and in pancreas cell of 6w-SY group compared with those of the control groups. MDA concentration was significantly decreased in spleen cell of 68w-SY group and in stomach cell of 68w-SY group compared with those of the control groups. NO concentration was significantly decreased in spleen cell of 68w-SY group, stomach cell of 68w-SY group compared with those of the control groups.

The Effects of Pulsed Electromagnetic Fields on Blood components, Antioxidant enzymes and Reactive Oxygen in Hyperlipidemic Rats (맥동전자장이 고지혈증 흰쥐의 혈액 성분, 항산화 효소 및 활성 산소에 미치는 영향)

  • Bang, Hyun-Soo;Jeong, In-Ho;Lee, Sang-Deok
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.349-356
    • /
    • 2014
  • The present study was aimed to investigate the effects of the application of pulsed electromagnetic fields on the blood components associated hyperlipidemia, antioxidant enzymes and reactive oxygen. The subjects were divided into three groups: General Diet, High fat Diet, High fat diet and pulsed electromagnetic fields. Pulsed electromagnetic field was applied with pulsed electromagnetic energy therapy equipment. The Glucose, free fatty acids, triglycerides, cholesterol and insulin was used to measure hyperlipidemia-related blood components, and the GSH, GRD, XO and MDA was used to measure antioxidant enzymes and reactive oxygen. The applied pulsed electromagnetic field has improved the concentrations of blood components and increasing GSH and GRD, that were decreased due to a high-fat diet and by reducing the increased MDA and XO to a level of general diet group. Therefore, the applied pulsed electromagnetic field can be the effective treatment for changes in the blood composition of hyperlipidemic rats, enhancement of antioxidative activity and the inhibition of reactive oxygen.

Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes

  • Hewage, Susara Ruwan Kumara Madduma;Piao, Mei Jing;Kang, Kyoung Ah;Ryu, Yea Seong;Fernando, Pattage Madushan Dilhara Jayatissa;Oh, Min Chang;Park, Jeong Eon;Shilnikova, Kristina;Moon, Yu Jin;Shin, Dae O;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.427-433
    • /
    • 2017
  • Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

Biochemical Characterization of Transgenic Tobacco Plants Expressing a Human Dehydroascorbate Reductase Gene

  • Kwon, Suk-Yoon;Ahn, Young-Ock;Lee, Haeng-Soon;Kwak, Sang-Soo
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.316-321
    • /
    • 2001
  • Dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1) catalyzes the reduction of DHA to reduced ascorbate (AsA) using glutathione (GSH) as the electron donor in order to maintain an appropriate level of ascorbate in plant cells. To analyze the physiological role of DHAR in environmental stress adaptation, we developed transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants that express a human DHAR gene isolated from the human fetal liver cDNA library in the chloroplasts. We also investigated the DHAR activity, levels of ascorbate, and GSH. Two transgenic plants were successfully developed by Agrobacterium-mediated transformation and were confirmed by PCR and Southern blot analysis. DHAR activity and AsA content in mature leaves of transgenic plants were approximately 1.41 and 1.95 times higher than in the non-transgenic (NT) plants, respectively In addition, the content of oxidized glutathione (GSSG) in transgenic plants was approximately 2.95 times higher than in the NT plants. The ratios of AsA to DHA and GSSG to GSH were changed by overexpression of DHAR, as expected, even though the total content of ascorbate and glutathione was not significantly changed. When tobacco leaf discs were subjected to methyl viologen at $5\;{\mu}M$, $T_0$ transgenic plants showed about a 50% reduction in membrane damage compared to the NT plants.

  • PDF

Hexane Soluble Fraction of Chungpesagan-tang Exhibits Protective Effect against Hypoxia/Reoxygenation-Induced N2a Cell Damage

  • Kim, Kyoung-A;Choi, Hwa-Jung;Kim, Bang-Geul;Park, Young-Ran;Kim, Ji-Sun;Ryu, Jae-Ha;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.377-384
    • /
    • 2008
  • Chungpesagan-tang (CST) has been traditionally used in Korea as a therapeutic for cerebral ischemia. To understand the protective mechanism of CST on hypoxia/reoxygenation insults in N2a cells, the cell viability was determined with the treatment of water solution and several solvent fractions of CST. The highest cell viability occurred when the cells were treated with the hexane soluble fraction of CST. Hypoxia/reoxygenation insults were shown to decrease the glutathione peroxidase (GPx) activity and the level of glutathione (GSH) and increase the superoxide dismutase (SOD) activity. However, treatment with hexane soluble fraction of CST ranging from 0.1 ${\mu}g$/ml to 10 ${\mu}g$/ml recovered the activities of GPx and SOD and maintained the levels of MDA and GSH at control levels. While hypoxia/reoxygenation insults induced the activation of ERK in N2a cells, treatment with the hexane soluble fraction of CST inhibited the activation of ERK in a concentration dependent manner. In this study, we were able to demonstrate that the bioactive compounds of CST can be effectively transferred into the hexane soluble fraction, and more importantly that CST exhibits protective effects against hypoxia/reoxygenation insults most likely by recovering redox enzyme activities.

Antioxidant effects of fucoxanthin rich powder in rats fed with high fat diet

  • Ha, Ae Wha;Na, Se Jung;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.475-480
    • /
    • 2013
  • The purpose of this study was to determine the antioxidant effect of fucoxanthin. After rats were fed a normal fat diet (NF), high fat diet (HF), and high fat with 0.2% fucoxanthin diet (HF + Fxn) for 4 weeks, the markers of oxidative stress and antioxidant capacity like lipid peroxidation, plasma total antioxidant capacity (TAC), and activities of antioxidant enzymes (catalase, superoxide dismutase (SOD), and gluthathione peroxidase (GSH-Px)) were determined. mRNA expression of transcription factor, nuclear erythroid factor like 2 (Nrf2), and its target genes such as NAD(P)H quinone oxidoreductase1 (NQO1) and heme oxygenase-1 (HO-1) were also determined. Mean weight gain in the HF + Fxn group was lower, without statistical significance, and the total food intake in the HF + Fxn group was lower than that in the HF group (P < 0.05). The activity of GSH-Px (P < 0.05) in plasma was significantly higher in the HF + Fxn group than those in the HF group (P < 0.05). In the liver, the activities of catalase (P < 0.05) and GSH-Px (P < 0.05) in the HF + Fxn group were significantly higher than those in the HF group. Plasma TAC level was significantly higher in the HF + Fxn group than that in the HF group (P < 0.05). Lipid peroxidation in plasma tended to be lower without statistical significance. Fucoxanthin supplements were shown to have higher mRNA expression of Nrf2 and NQO1 than those in the high fat diet only group (P < 0.05). In conclusion, supplementation of fucoxanthin improved the antioxidant capacity, depleted by high fat diet, by activating the Nrf2 pathway and its downstream target gene NQO1. Therefore, supplementation of fucoxanthin, especially for those who consume high fat in their diet, may benefit from reduced risk of oxidative stress.

An Analysis of Dietary Intakes and Plasma Biochemical Indices in Female College Students by Skin Types (여대생들의 피부유형에 따른 식이섭취 실태조사 및 혈장 생화학적 성분분석)

  • 김정희;정원정
    • Korean Journal of Community Nutrition
    • /
    • v.4 no.1
    • /
    • pp.20-29
    • /
    • 1999
  • This study was done to investigate the nutrient intakes and plasma biochemcial indices in 68 female college students according to their skin types. Nutrient intakes were investigated by quick estimation. The plasma TG and total cholesterol levels were measured by the Spotchem sp-4410. The plasma levels of retinol and $\alpha$-tocopherol were measured by HPLC. In addition, the activities of antioxidant defense enzymes such as plasma glutathione peroxidase(GSH-Px) and glutathione reductase(GHS-Rd) were determined. All data were statistically analyzed by SAS PC package program. The results of this study were as follows : The average age, height, weight, BMI, systolic blood pressure and diastolic blood pressure ofthe subjects were $20.9{\pm}1.9yr, 160.7{\pm}4.3cm, 53.0{\pm}7.1kg, 20.5{\pm}2.4kg/m^2, 105.3{\pm}11.5mmHg and 70.6{\pm}7.7mmHg$, respectively. Ten students(14.7%) had normal skin type, 19 students(27.9%) had dry skin type, 11 students(16.2%) had oily skin type, 17 students(25.0%) had acne and 11 students(16.2%) had mixed skin type. The intakes of energy and fats in oily skin group were significantly higher(p<0.05) than those of the dry skin group, but vitamin C intake in the mixed skin group was significantly higher(p<0.05) than those of the dry skin group, but vitamin C intake in the mixed skin group was significantly lower(p<0.05) than that in other skin types. The intakes of other nutrients were not significantly different among skin types. The analysis of lipids showed that the plasma total-cholesterol level of mixed skin group was significantly lower(p<0.05) than that of the oily skin group, whereas other lipid levels were not significantly different. The other parameters such as retinol, $\alpha$-tocopherol, GSH-Px and GSH-Rd of plasma were not significantly different among skin types. Overall results indicate that dietary intake pattern may influence skin type and thereby some blood biochemical indices can be different by skin types.

  • PDF

Hyperbaric oxygenation applied before or after mild or hard stress: effects on the redox state in the muscle tissue

  • Claudia Carolina Perez-Castro;Alexandre Kormanovski;Gustavo Guevara-Balcazar;Maria del Carmen Castillo-Hernandez;Jose Ruben Garcia-Sanchez;Ivonne Maria Olivares-Corichi;Pedro Lopez-Sanchez;Ivan Rubio-Gayosso
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • The mechanism is unclear for the reported protective effect of hyperbaric oxygen preconditioning against oxidative stress in tissues, and the distinct effects of hyperbaric oxygen applied after stress. The trained mice were divided into three groups: the control, hyperbaric oxygenation preconditioning, and hyperbaric oxygenation applied after mild (fasting) or hard (prolonged exercise) stress. After preconditioning, we observed a decrease in basal levels of nitric oxide, tetrahydrobiopterin, and catalase despite the drastic increase in inducible and endothelial nitric oxide synthases. Moreover, the basal levels of glutathione, related enzymes, and nitrosative stress only increased in the preconditioning group. The control and preconditioning groups showed a similar mild stress response of the endothelial and neuronal nitric oxide synthases. At the same time, the activity of all nitric oxide synthase, glutathione (GSH) in muscle, declined in the experimental groups but increased in control during hard stress. The results suggested that hyperbaric oxygen preconditioning provoked uncoupling of nitric oxide synthases and the elevated levels of GSH in muscle during this study, while hyperbaric oxygen applied after stress showed a lower level of GSH but higher recovery post-exercise levels in the majority of antioxidant enzymes. We discuss the possible mechanisms of the redox response and the role of the nitric oxide in this process.

Peroxidative Damage in Rat Liver Exposed to Microwave (전자기파 조사 흰쥐 간조직에서의 과산화적 손상)

  • Choi, Jeong-Hwa;Shin, Hyun-Jin;Yu, Heum;Lee, Jun-Ha;Rhee, Soon-Jae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1262-1266
    • /
    • 1998
  • The purpose of this study was to investigate peroxidative damage and antioxidative defense systems such as superoxide dismutase(SOD), glutathione peroxidase(GSH Px), glutathione S transferase (GST) and vitamin E of liver in rat exposed microwave. Sprague Dawley male rats 200$\pm$10gm were randomly assigned to normal and microwave(MW) groups. After rats were irradiated with microwave at frequency of 2.45GHz for 15min, the change patterns of antioxidative defense system and peroxidative damage of liver tissue in MW group were investigated for 16 days(the 2nd, 4th, 6th, 8th and 16th days) compared with those of normal group. The activity of superoxide dismutase(SOD) in MW group was increased at the 2nd day compared with that of normal group, but not significantly. The glutathione peroxidase(GSH Px) in MW group was decreased to 24% and 25% at the 4th and 6th days, respectively, compoared with that of normal group, but GSH Px was increased to level of normal group at the 16th day. The activity of glutathione S transferase(GST) in MW group was decreased at the 2nd day after irradiated with microwave, but GST showed to that of normal group at the 16th day. The content of vitamin E in MW group was lower than that of normal group at the 6th and 8th days after the irradiation, but was recovered to the level of normal group at the 16th days. The content of thi obarbituric acid reactive substances(TBARS) of liver in MW group was increased to 28.9%, 53.8%, 69.7% and 30.2% of normal group at the 2nd, 4th, 6th and 8th days after the irradiation, respectively, but recovered to the level of normal group at the 16th day. The present results indicated that antiox idative defense systems of rats irradiated microwave was weaken more than that of normal group, which lead to acceleration of lipid peroxidation.

  • PDF