• 제목/요약/키워드: GPU optimization

검색결과 70건 처리시간 0.024초

유전 알고리즘을 이용한 클라우드 환경의 인공지능 워크로드 스케줄링 (Scheduling of Artificial Intelligence Workloads in Could Environments Using Genetic Algorithms)

  • 권석민;반효경
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권3호
    • /
    • pp.63-67
    • /
    • 2024
  • 최근 스마트 물류, 핀테크, 엔터테인먼트 등 다양한 산업 분야의 인공지능 워크로드들이 클라우드 상에서 실행되고 있다. 본 논문은 이기종 GPU 클러스터로 구성된 다중 테넌트 클라우드 시스템에서 다양한 인공지능 워크로드가 실행될 때 발생하는 스케줄링 문제를 다룬다. 전통적인 스케줄링은 이러한 환경에서 GPU 이용률을 크게 저하시켜 시스템의 성능을 떨어뜨린다. 이러한 문제를 해결하기 위해, 본 논문에서는 유전 알고리즘 기반의 최적화 기법을 사용하는 새로운 스케줄링 접근 방식을 제안하고, 이를 프로세스 기반 이벤트 시뮬레이션 프레임워크에 구현하였다. 알리바바의 MLaaS 클러스터에서 수집한 광범위한 인공지능 작업들의 트레이스를 재현하는 실험을 통해 제안하는 스케줄링이 기존 스케줄링에 비해 GPU 이용률을 크게 개선함을 확인하였다.

GPU 를 활용한 스캔라인 블록 Gibbs 샘플링 기법의 가속 (Accelerating Scanline Block Gibbs Sampling Method using GPU)

  • ;김원식;;박인규
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 하계학술대회
    • /
    • pp.77-78
    • /
    • 2014
  • A new MCMC method for optimization is presented in this paper, which is called the scanline block Gibbs sampler. Due to its slow convergence speed, traditional Markov chain Monte Carlo (MCMC) is not widely used. In contrast to the conventional MCMC method, it is more convenient to parallelize the scanline block Gibbs sampler. Since The main part of the scanline block Gibbs sampler is to calculate message between each edge, in order to accelerate the calculation of messages passing in scanline sampler, it is parallelized in GPU. It is proved that the implementation on GPU is faster than on CPU based on the experiments on the OpenGM2 benchmark.

  • PDF

GPU기반의 디지털 홀로그램 고속 생성을 위한 최적화 기법 (An Optimization for fast digital hologram generation based on GPU)

  • 송중석;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 하계학술대회
    • /
    • pp.18-21
    • /
    • 2011
  • 디지털 홀로그램은 일반적으로 computer generated hologram(CGH)기법에 의해서 생성된다. 하지만 원리적으로 CGH 기법은 많은 연산량과 복잡도를 요구하고 있기 때문에 실시간으로 디지털 홀로그램을 생성하는 것은 매우 어렵다. 본 논문에서는 CGH 고속연산을 위해 graphics processing unit(GPU)의 병렬처리구조인 CUDA를 사용하였고, 추가적으로 다중 GPU 연산처리를 위해 OpenMP를 사용하였다. 더 나아가 이를 최적화하기 위해서 상수화, 벡터화, 루프풀기 등의 기법들을 제안한다. 결과적으로, 본 논문에서 제안된 기법을 통해서 기존 CPU에서의 CGH 연산속도에 비해 약 8,300배 정도의 속도를 개선할 수 있었다.

  • PDF

Computationally Efficient Implementation of a Hamming Code Decoder Using Graphics Processing Unit

  • Islam, Md Shohidul;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of Communications and Networks
    • /
    • 제17권2호
    • /
    • pp.198-202
    • /
    • 2015
  • This paper presents a computationally efficient implementation of a Hamming code decoder on a graphics processing unit (GPU) to support real-time software-defined radio, which is a software alternative for realizing wireless communication. The Hamming code algorithm is challenging to parallelize effectively on a GPU because it works on sparsely located data items with several conditional statements, leading to non-coalesced, long latency, global memory access, and huge thread divergence. To address these issues, we propose an optimized implementation of the Hamming code on the GPU to exploit the higher parallelism inherent in the algorithm. Experimental results using a compute unified device architecture (CUDA)-enabled NVIDIA GeForce GTX 560, including 335 cores, revealed that the proposed approach achieved a 99x speedup versus the equivalent CPU-based implementation.

CUDA 프레임워크 상에서 스카이라인 질의처리 알고리즘 최적화 (Optimizing Skyline Query Processing Algorithms on CUDA Framework)

  • 민준;한환수;이상원
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제37권5호
    • /
    • pp.275-284
    • /
    • 2010
  • GPU는 대용량 데이터 처리를 위해 특화된 멀티 코어 기반의 스트림 프로세서로서 빠른 데이터 처리 속도 및 높은 메모리 대역 동의 장점을 가지며, CPU에 비해 가격이 저렴하다. 최근 이러한 GPU의 특성용 활용하여 범용 컴퓨팅 분야에 활용하고자 하는 시도가 계속되고 있다. 엔비디아에서 발표한 범용 병렬 컴퓨팅 아키텍처인 쿠다(CUDA) 프로그래밍 모델의 경우 프로그래머가 GPU 상에서 동작하는 범용 어플리케이션을 보다 손쉽게 개발할 수 있도록 지원한다. 본 논문에서는 쿠다 프로그래밍 모델을 이용하여 기본적인 중첩-반복 스카이라인 알고리즘을 병렬화시킨다. 그리고 스카이라인 알고리즘의 특성을 고려하여 GPU 자원용 효율적으로 사용할 수 있도록 GPU의 메모리 및 명령어 처리율에 중점을 두고 단계적인 최적화를 진행한다. 최적화 단계에 따라 각각 다른 성능 개선이 나타나는 것을 확인하였으며, 그 결과 기본 병렬 중첩-반복 알고리즘에 비해 평균 80%의 성능이 향상됨을 확인하였다.

Efficient Representation of Pore Flow, Absorption, Emission and Diffusion using GPU-Accelerated Cloth-Liquid Interaction

  • Jong-Hyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권6호
    • /
    • pp.23-29
    • /
    • 2024
  • 본 논문에서는 옷감과 입자 기반 유체 해법인 SPH(Smoothed particle hydrodynamics)를 이용한 액체 간의 상호작용으로 표현되는 다공성 흐름(Pore flow), 흡수, 방출 그리고 확산 효과를 GPU 기반으로 빠르게 표현할 수 있는 방법을 제안한다: 1) 옷감-액체의 상호작용에 의해 표현되는 다양한 물리적 효과를 GPU 기반으로 표현할 수 있는 통합형 프레임워크, 2) SPH 기반으로 노드의 포화도를 효율적으로 계산하고 이를 주변 Porous 입자들로 전달하는 방법, 3) 유체 흡수 및 방출 방향을 안정적으로 계산하기 위해 다르시 법칙(Darcy's law)을 기반으로 안정성을 개선시키는 방법, 4) Porous 입자들로 흡수되는 과정에서 유체의 흐름 방향에 따라 흡수되는 양을 조절하는 방법, 마지막으로 5) SPH 입자의 최대 질량이 넘지 않도록 방출할 수 있는 방법을 제시한다. 제안하는 방식의 가장 큰 장점은 모든 연산이 GPU에서 계산되고 동작하기 때문에 빠르게 옷감과 유체의 상호작용으로 표현되는 다공성 재질, 다공성 흐름, 흡수, 반사, 확산 등을 모델링할 수 있다.

최적화된 CUDA 소프트웨어 제작을 위한 프로그래밍 기법 분석 (Analysis of Programming Techniques for Creating Optimized CUDA Software)

  • 김성수;김동헌;우상규;임인성
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권7호
    • /
    • pp.775-787
    • /
    • 2010
  • GPU(Graphics Processing Unit)는 범용 CPU와는 달리 다수코어 스트리밍 프로세서(manycore streaming processor) 형태로 특화되어 발전되어 왔으며, 최근 뛰어난 병렬 처리 연산 능력으로 인하여 점차 많은 영역에서 CPU의 역할을 대체하고 있다. 이러한 추세에 따라 최근 NVIDIA 사에서는 GPGPU(General Purpose GPU) 아키텍처인 CUDA(Compute Unified Device Architecture)를 발표하여 보다 유연한 GPU 프로그래밍 환경을 제공하고 있다. 일반적으로 CUDA API를 사용한 프로그래밍 작업시 GPU의 계산구조에 관한 여러 가지 요소들에 대한 특성을 정확히 파악해야 효율적인 병렬 소프트웨어를 개발할 수 있다. 본 논문에서는 다양한 실험과 시행착오를 통하여 획득한 CUDA 프로그래밍에 관한 최적화 기법에 대하여 설명하고, 그러한 방법들이 프로그램 수행의 효율에 어떠한 영향을 미치는지 알아본다. 특히 특정 예제 문제에 대하여 효과적인 계층 구조 메모리의 접근과 코어 활성화 비율(occupancy), 지연 감춤(latency hiding) 등과 같이 성능에 영향을 미치는 몇 가지 규칙을 실험을 통해 분석해봄으로써, 향후 CUDA를 기반으로 하는 효과적인 병렬 프로그래밍에 유용하게 활용할 수 있는 구체적인 방안을 제시한다.

Multi-GPU 기반의 고속 디지털 홀로그램 생성 (Fast Generation of Digital Hologram Based on Multi-GPU)

  • 송중석;박정식;서영호;박종일
    • 방송공학회논문지
    • /
    • 제16권6호
    • /
    • pp.1009-1017
    • /
    • 2011
  • 실시간 홀로그래피 방송을 제작하기 위해서는 디지털 홀로그램을 고속으로 생성하는 것이 중요하다. 본 논문에서는 디지털 홀로그램 생성을 위한 Computer-Generated Holography(CGH) 식의 병렬 구조를 최적화하고, Compute Unified Device Architecture(CUDA)와 Open Multi-Processing (OpenMP) 를 이용한 Multi Graphic Processing Unit(Multi-GPU) 기반의 디지털 홀로그램의 고속 생성을 위한 최적화 기법을 제안한다. 디지털 홀로그램을 생성하는 과정은 독립적인 연산을 할 수 있는 다수의 개체로 병렬화 할 수 있는 구조이기 때문에 이에 특화된 CUDA와 OpenMP를 사용함으로써 CGH식을 고속으로 연산할 수 있다. 여기서 더 나아가 이를 최적화하기 위해서 상수화, 벡터화, 루프풀기 등의 방법을 제안한다. 본 논문에서 제안된 기법을 통해서 기존 CPU에서의 CGH 연산속도에 비해 약 9,700배 정도의 속도를 개선할 수 있었다.

GPU를 이용한 소프트웨어 디지털 필터의 성능개선에 관한 연구 (A Study on the Performance Improvement of Software Digital Filter using GPU)

  • 염재환;오세진;노덕규;정동규;황주연;오충식;김효령
    • 융합신호처리학회논문지
    • /
    • 제19권4호
    • /
    • pp.153-161
    • /
    • 2018
  • 본 논문은 GPU를 이용한 소프트웨어(SW) 디지털 필터의 성능개선에 대해 기술한다. 기존에 개발한 SW 디지털 필터는 CPU 기반에서 동작하여 속도가 느린 문제점이 있었는데, EAVN 관측데이터의 디지털 필터링을 위해 GPU를 도입하여 연산속도를 개선하였고, 필터링을 통하여 다른 관측국과의 데이터 처리가 가능하도록 하였다. SW 디지털 필터의 연산속도를 개선하기 위해 Tensor Core가 내장된 NVIDIA Titan V GPU 보드를 사용하였으며, 2Gbps (512 MHz BW, 1-IF)의 95초 관측데이터를 필터링하는데 관측시간의 약 1.1배, 1Gbps (16MHz BW, 16-IF)로 필터링하는데 약 0.78배 처리속도를 각각 달성하였다. 또한 KVN으로 1, 2Gbps 동시관측한 데이터에 대해 2Gbps 데이터를 디지털 필터링하여 기존 1Gbps와 비교한 결과, 교차전력스펙트럼, 위상, SNR 등이 유사한 값을 얻어 본 연구에서 개발한 SW 디지털 필터를 활용한 데이터 처리와 분석을 수행하는데 유효함을 확인하였다. 향후에는 여러 개의 GPU 보드를 사용하기 위한 소스 코드의 분산처리 최적화를 수행할 경우 실시간으로 관측데이터를 필터링할 수 있을 것으로 기대된다.

Regular Mesh 기반 지리정보 3D 합성모델 (Geographic information 3D Synthetic Model based on Regular Mesh)

  • 정지환;황선명;김성호
    • 한국항행학회논문지
    • /
    • 제15권4호
    • /
    • pp.616-625
    • /
    • 2011
  • 본 연구에서는 지형을 Rendering 기법의 대표적인 방법인 Geometry Clipmaps와 ROAM 2.0을 분석하여 Rendering 연산에 소요되는 연산을 CPU가 아닌 GPU에 중점을 두어 보다 빠르고 넓은 가시화 영역을 보장하는 확장된 Geometry Clipmaps 알고리즘을 제안한다. 확장된 알고리즘은 LOD(Level of Detail)을 통한 각 레벨의 Mesh 구성 방법, 레벨간의 연결망 Mesh 구성 방법, VFC(View Frustum Culling)을 사용하여 Rendering을 최적화 할 수 있는 Mesh Block화 방안 그리고 최대 1m 해상도를 갖는 고해상도 영상 Mapping 방안 등을 포함하고 있다.