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Abstract

A new MCMC method for optimization is presented in this paper, which is called the scanline block
Gibbs sampler. Due to its slow convergence speed, traditional Markov chain Monte Carlo (MCMC) is not
widely used. In contrast to the conventional MCMC method, it is more convenient to parallelize the
scanline block Gibbs sampler. Since The main part of the scanline block Gibbs sampler is to calculate
message between each edge, in order to accelerate the calculation of messages passing in scanline
sampler, it is parallelized in GPU. It is proved that the implementation on GPU is faster than on CPU

based on the experiments on the OpenGM2 benchmark.

1. Introduction

Markov Random Field (MRF) has been widely
used in various research areas. Markov Chain Monte
Carlo (MCMC) has been used for the inference on the
MRF model. Due to its slow convergence, traditional
MCMC is not widely used in MRF optimization.
Afterwards, lots of MCMC optimization methods have
been proposed such as Swendsen—Wang cuts method
and the population—based MCMC [4].

In this paper, a method called a scanline block

Gibbs sampler is introduced and implemented on GPU.

The message passing part is parallelized in order to
accelerate the computational speed. It is shown that
the GPU implementation would be faster than CPU
from the experimental results.

2. Proposed Algorithm

The main idea of the proposed algorithm is to use
the scanline block Gibbs sampler for optimization
which is quite similar to the conventional approaches.
However, the novelty is that message passing part is
implemented on GPU rather than CPU. The pipeline of
the algorithm is shown in Fig. 1. And the details of
block Gibbs sampler can be referred in [2].

Firstly, the 4—neighborhood grid graph model is
chosen from the OpenGMZ2 benchmark [5] as our
graph model, then the whole graph is divided into

disjoint set, in which each row becomes each block.

So let us consider a set of nodes X ={X,,..., X, }in a

row. Then the distribution of X can be formulated as
follows:
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Fig. 1 The pipeline of the proposed algorithm
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Eq. (2) is referred to [1]. And the message is
calculated by Eq. (2).
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Then the conditional distribution for a node I
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conditioned on X;,; can be derived by Eq. (3).
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Once the joint distribution can be decomposed in
the form of
P(X)
= P(X1 | Xz)P(Xz | X3) T P(Xm—l | Xm)P(Xm)
Finally, sampling is available from node X, to X; .

In Eq. (2), the CUDA model is utilized to compute
the message between each edge. The more details
about the CUDA programming could be found in [3].

Due to the maximum threads Tmax (=512 on the GTX

(4)

580) in a block, so the two dimensional parallelism is
been used in Fig. 2. Firstly, assume that the
resolution of the image is width*height. Then the
number of threads in a block is set to 16*16. So M
(rows) and N (columns) blocks can be defined as
M =width /16 , N =height/16 . According to the
aforementioned, each thread can be corresponding to
each pixel. And let assume that the current pixel
coordinate is (X,Yy). According to Eq. (5), the thread
can be mapped to pixel position.

{x =blockldxx *16 + threadldx.x

y =blockldxy*16 + threadldxy

where blockldx and threadldx are
variables in CUDA.
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Fig. 2 The thread and block assignment

Before we execute the kernel function, we used
the flowing test as our determine condition:

if (x < width& &y < height) (6)

3. Experimental Results

In order to achieve maximum a posterior (MAP)
solution, the simulated annealing (SA) scheme is
applied together with the proposed method. For the
initialization, the winner—takes—scanline (WTS) is
chosen as our initialization algorithm, which is an
extension of the winner—takes—all (WTA) from a
single node to a row of nodes.

The decaying factor Cis assigned to 0.995 and a
is to 0.5. All the experiments are executed on the

2.67GHz CPU AND 4 GB RAM and GPU is NVIDIA
GeForce GTX 580. The penguin—small in color—
segment is chosen as our energy function. For more
information about the color segment, please refer to
[5]. From Fig. 3, we can see both of results in CPU
and GPU can find the global optimization and
converge. And the speed is also compared in table 1,
and the result in GPU is obviously faster than the
result in CPU.
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Fig. 3 CPU result (left) and GPU result (right)

Device Time (s)
CPU 1.104
GPU 0.896

Tablel. Execution time comparison (for a single
iteration)

4. Conclusion

In this paper, a kind of MCMC method combined
with  GPU method was proposed. From the
experimental results, it is proved that the scanline
block Gibbs sampler implemented in GPU is faster
than CPU. And the energy function which has a large
number of labels will be chosen as our future work.
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