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Abstract 
 

A new MCMC method for optimization is presented in this paper, which is called the scanline block 
Gibbs sampler. Due to its slow convergence speed, traditional Markov chain Monte Carlo (MCMC) is not 
widely used. In contrast to the conventional MCMC method, it is more convenient to parallelize the 
scanline block Gibbs sampler. Since The main part of the scanline block Gibbs sampler is to calculate 
message between each edge, in order to accelerate the calculation of messages passing in scanline 
sampler, it is parallelized in GPU. It is proved that the implementation on GPU is faster than on CPU 
based on the experiments on the OpenGM2 benchmark. 
 

1. Introduction 
 

Markov Random Field (MRF) has been widely 
used in various research areas. Markov Chain Monte 
Carlo (MCMC) has been used for the inference on the 
MRF model. Due to its slow convergence, traditional 
MCMC is not widely used in MRF optimization. 
Afterwards, lots of MCMC optimization methods have 
been proposed such as Swendsen-Wang cuts method 
and the population-based MCMC[4]. 

In this paper, a method called a scanline block 
Gibbs sampler is introduced and implemented on GPU. 
The message passing part is parallelized in order to 
accelerate the computational speed. It is shown that 
the GPU implementation would be faster than CPU 
from the experimental results. 

 

2. Proposed Algorithm 
 

The main idea of the proposed algorithm is to use 
the scanline block Gibbs sampler for optimization 
which is quite similar to the conventional approaches. 
However, the novelty is that message passing part is 
implemented on GPU rather than CPU. The pipeline of 
the algorithm is shown in Fig. 1. And the details of 
block Gibbs sampler can be referred in [2].  

Firstly, the 4-neighborhood grid graph model is 
chosen from the OpenGM2 benchmark [5] as our 
graph model, then the whole graph is divided into 

disjoint set, in which each row becomes each block. 

So let us consider a set of nodes },...,{ 1 nxxX = in a 

row. Then the distribution of X can be formulated as 
follows: 

 

 
Fig. 1 The pipeline of the proposed algorithm 
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Eq. (2) is referred to [1]. And the message is 
calculated by Eq. (2). 
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 Then the conditional distribution for a node i  
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