• 제목/요약/키워드: GPT-2 model

검색결과 83건 처리시간 0.028초

프롬프트 엔지니어링을 통한 GPT-4 모델의 수학 서술형 평가 자동 채점 탐색: 순열과 조합을 중심으로 (Exploring automatic scoring of mathematical descriptive assessment using prompt engineering with the GPT-4 model: Focused on permutations and combinations)

  • 신병철;이준수;유연주
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.187-207
    • /
    • 2024
  • 본 연구에서는 GPT-4 기반의 ChatGPT를 활용한 서술형 평가 문항의 자동 채점 가능성을 탐색하기 위해 교사와 GPT-4 기반의 ChatGPT의 채점 결과를 비교, 분석하였다. 이를 위해 학생평가지원포털에 있는 고등학교 1학년 순열과 조합 단원에서 3개의 서술형 문항을 선정하였다. 문항 1, 2는 문제 해결 전략이 1가지인 문항이고, 문항 3은 문제 해결 전략이 2가지 이상인 문항이었다. 8년 이상의 교육 경력이 있는 교사 2명이 학생 204명의 답안을 채점하고, GPT-4 기반의 ChatGPT의 채점 결과와 비교하였다. 문항별로 Few-Shot-CoT, SC, 구조화, 반복 프롬프트 기법 등을 활용하여 채점을 위한 프롬프트를 구성하였고, 이를 GPT-4 기반의 ChatGPT에 입력하여 채점하였다. 채점 결과, 문항 1, 2는 교사의 채점 결과와 GPT-4의 채점 결과 사이에 강한 상관관계를 충족하였다. 문제 해결 전략이 2가지인 문항 3은 먼저 채점 전 학생 답안을 문제 해결전략별로 분류하는 프롬프트를 GPT-4 기반의 ChatGPT에 입력하여 답안을 분류하였다. 이후 유형별로 채점 프롬프트를 적용하여 GPT-4 기반의 ChatGPT에 입력하여 채점하였고, 채점 결과 역시 교사의 채점 결과와 강한 상관관계가 나타났다. 이를 통해 프롬프트 엔지니어링을 활용한 GPT-4 모델이 교사의 채점을 보조할 수 있는 가능성을 확인하였으며 본 연구의 한계점 및 향후 연구 방향을 제시하였다.

자연어 처리 모델을 활용한 블록 코드 생성 및 추천 모델 개발 (Development of Block-based Code Generation and Recommendation Model Using Natural Language Processing Model)

  • 전인성;송기상
    • 정보교육학회논문지
    • /
    • 제26권3호
    • /
    • pp.197-207
    • /
    • 2022
  • 본 논문에서는 코딩 학습 중 학습자의 인지 부하 감소를 목적으로 자연어 처리 모델을 이용하여 전이학습 및 미세조정을 통해 블록 프로그래밍 환경에서 이미 이루어진 학습자의 블록을 학습하여 학습자에게 다음 단계에서 선택 가능한 블록을 생성하고 추천해 주는 머신러닝 기반 블록 코드 생성 및 추천 모델을 개발하였다. 모델 개발을 위해 훈련용 데이터셋은 블록 프로그래밍 언어인 '엔트리' 사이트의 인기 프로젝트 50개의 블록 코드를 전처리하여 제작하였으며, 훈련 데이터셋과 검증 데이터셋 및 테스트 데이터셋으로 나누어 LSTM, Seq2Seq, GPT-2 모델을 기반으로 블록 코드를 생성하는 모델을 개발하였다. 개발된 모델의 성능 평가 결과, GPT-2가 LSTM과 Seq2Seq 모델보다 문장의 유사도를 측정하는 BLEU와 ROUGE 지표에서 더 높은 성능을 보였다. GPT-2 모델을 통해 실제 생성된 데이터를 확인한 결과 블록의 개수가 1개 또는 17개인 경우를 제외하면 BLEU와 ROUGE 점수에서 비교적 유사한 성능을 내는 것을 알 수 있었다.

웹 구축 보조 시스템에 대한 GUI 객체 감지 및 대규모 언어 모델 활용 연구 (A Study on the Web Building Assistant System Using GUI Object Detection and Large Language Model)

  • 장현철;장형국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.830-833
    • /
    • 2024
  • As Large Language Models (LLM) like OpenAI's ChatGPT[1] continue to grow in popularity, new applications and services are expected to emerge. This paper introduces an experimental study on a smart web-builder application assistance system that combines Computer Vision with GUI object recognition and the ChatGPT (LLM). First of all, the research strategy employed computer vision technology in conjunction with Microsoft's "ChatGPT for Robotics: Design Principles and Model Abilities"[2] design strategy. Additionally, this research explores the capabilities of Large Language Model like ChatGPT in various application design tasks, specifically in assisting with web-builder tasks. The study examines the ability of ChatGPT to synthesize code through both directed prompts and free-form conversation strategies. The researchers also explored ChatGPT's ability to perform various tasks within the builder domain, including functions and closure loop inferences, basic logical and mathematical reasoning. Overall, this research proposes an efficient way to perform various application system tasks by combining natural language commands with computer vision technology and LLM (ChatGPT). This approach allows for user interaction through natural language commands while building applications.

A Collaborative Validation Study for the Gpt Delta Mouse Using N-propyl-N-nitrosourea, Diethylnitrosamine, Mitomycin C and Chlorambucil: A Summary Report of the Third Collaborative Study of the Transgenic Mouse Mutation Assay by JEMS/MMS

  • Yajima, Nobuhiro;Hyogo, Atsushi;Tamura, Hironobu;Nakajima, Madoka;Nohmi, Takehiko
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.109-110
    • /
    • 2003
  • To validate a novel mouse model, gpt delta, for in vivo mutagenesis, the Mammalian Mutagenesis Society (MMS), a subgroup of the Environmental Mutagen Society of Japan (JEMS) (JEMS/MMS), performed a collaborative study as the third trial for transgenic animal assay. In this mouse model, point mutations and deletions re separately identified by gpt (6-thioguanine-resistant) and Spi- (sensitive to P2 interference) selections, respectively.(omitted)

  • PDF

ChatGPT에 관한 연구: 뉴스 빅데이터 서비스와 ChatGPT 활용 사례를 중심으로 (A Study on the ChatGPT: Focused on the News Big Data Service and ChatGPT Use Cases)

  • 이윤희;김창식;안현철
    • 디지털산업정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.139-151
    • /
    • 2023
  • This study aims to gain insights into ChatGPT, which has recently received significant attention. The study utilized a mixed method involving case studies and news big data analysis. ChatGPT can be described as an optimized language model for dialogue. The question arises whether ChatGPT will replace Google search services, posing a potential threat to Google. It could hurt Google's advertising business, which is the foundation of its profits. With AI-based chatbots like ChatGPT likely to disrupt the web search industry, Google is establishing a new AI strategy. The study used the BIG KINDS service and analyzed 2,136 articles over six months, from August 23, 2022, to February 22, 2023. Thirty of these articles were written in 2022, while 2,106 have been reported recently as of February 22, 2023. Also, the study examined the contents of ChatGPT by utilizing literature research, news big data analysis, and use cases. Despite limitations such as the potential for false information, analyzing news big data and use cases suggests that ChatGPT is worth using.

Evaluating the Impact of Training Conditions on the Performance of GPT-2-Small Based Korean-English Bilingual Models

  • Euhee Kim;Keonwoo Koo
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.69-77
    • /
    • 2024
  • 본 연구는 GPT-2-Small 버전 모델을 사용하여 한국어와 영어를 학습하는 이중 언어 모델의 성능을 평가하고, 다양한 학습 조건이 모델 성능에 미치는 영향을 분석하였다. 연구 방법으로 단일 언어 학습, 순차 학습, 순차-교차 학습, 순차-EWC 학습의 네 가지 조건을 설정하여 모델을 훈련하였다. 국립국어원 말뭉치와 영어 위키피디어 말뭉치를 사용하고, PPL과 BLiMP 지표를 통해 성능을 측정하였다. 연구결과, 단일 언어 학습 조건에서 PPL 값은 16.2, BLiMP 정확도는 73.7%로 가장 우수한 성능을 보였다. 반면, 순차-EWC 학습 조건에서는 PPL 값이 41.9로 가장 높았고, BLiMP 정확도는 66.3%로 가장 낮았다(p < 0.05). 단일 언어 학습이 이중 언어 모델 성능 최적화에 가장 효과적임을 확인하였다. 이는 결정적 시기 이론에 따라 모델이 단일 언어에 최적화될 때 더 나은 성능을 보인다는 것을 의미한다. 또한, 프로그래밍 가소성을 조절하는 EWC 정규화를 적용한 지속 학습 조건에서는 성능 저하가 두드러졌는데, 이는 정규화가 가중치 업데이트를 제한하여 새로운 언어 학습 능력을 저하시켰다는 것을 의미한다. 본 연구는 언어 모델링에 대한 이해를 높이고, AI 언어 학습에서 인지적 유사성을 개선하는 데 기여한다.

Generative AI as a Virtual Conversation Partner in Language Learning

  • Ji-Young Seo;Seon-Ah, Kim
    • International Journal of Advanced Culture Technology
    • /
    • 제12권2호
    • /
    • pp.7-15
    • /
    • 2024
  • Despite a recent surge in multifaceted research on AI-integrated language learning, empirical studies in this area remain limited. This study adopts a Human-Generative AI parallel processing model to examine students' perceptions, asking 182 college students to independently construct knowledge and then compare their efforts with the results generated through in-classroom conversations with ChatGPT 3.5. In questionnaire responses, most students indicated that they found these activities useful and expressed a keen interest in learning various ways to utilize generative AI for language learning with instructor guidance. The findings confirm that ChatGPT's potential as a virtual conversation partner. Identifying specific reasons for the perceived usefulness of conversation activities and drawbacks of ChatGPT, this study emphasizes the importance of teachers staying informed about both the latest advances in technology and their limitations. We recommend that teachers endeavor to creatively design various classroom activities using AI technology.

ChatGPT는 한국작업치료사면허시험에 합격할 수 있을까? (Can ChatGPT Pass the National Korean Occupational Therapy Licensure Examination?)

  • 홍준화;김나연;민혜민;양하민;이시현;최서진;박진혁
    • 재활치료과학
    • /
    • 제13권1호
    • /
    • pp.65-74
    • /
    • 2024
  • 목적 : 본 연구는 대규모 언어 모델에 기반한 인공지능인 ChatGPT가 한국작업치료사면허시험에 통과할 수 있는지 알아보고자 하였다. 연구방법 : 한국보건의료인국가시험원에서 제공하는 2018년부터 2022년도까지의 한국작업치료사면허시험 문항 중 공개되지 않은 작업치료실기 문항을 제외하고 작업치료학기초, 의료관계법규, 작업치료학 문항을 활용하였다. 시험문항과 함께 가장 적절한 정답을 제시하도록 프롬프트를 영어로 구성하였고 이를 입력한 후 ChatGPT가 제시하는 답을 채점하였다. 2명의 연구자가 독립적으로 전체 과정을 진행하였으며, 2명의 연구자 채점한 정확도를 평균으로 5개년도의 시험에 대한 합격 여부를 확인하였고 연구자 간 ChatGPT 답에 대한 일치도를 확인하였다. 결과 : ChatGPT는 2020년에서만 합격하였고 나머지 4개년도 시험은 탈락권 점수를 보였다. 구체적으로 의료관계법규 문항의 정확도는 25~57% 범위를 보였고 다른 문항의 정확도는 모두 60% 이상을 기록하였다. 또한 의료관계법규 문항을 제외한 연구자 간 ChatGPT는 높은 일치도를 보였으며, 이는 정확도와 유의미한 상관관계를 보였다. 결론 : 언어나 문화권에 영향을 받는 문항의 경우 아직 ChatGPT를 적용하는 데 제한이 있음을 확인하였다. 추후 프롬프트의 최적화 작업과 함께 지속적인 데이터의 학습에 따라 작업치료학을 전공하는 학생들의 학습 도구로서 활용될 수 있는지에 대한 지속적인 연구가 필요하다.

이미지 객체 및 메타정보 기반 GPT 활용 SNS 문장 작성 보조 시스템 (GPT-enabled SNS Sentence writing support system Based on Image Object and Meta Information)

  • 이동희;문미경;최봉준
    • 융합신호처리학회논문지
    • /
    • 제24권3호
    • /
    • pp.160-165
    • /
    • 2023
  • 본 연구에서는 SNS와 같이 이미지와 함께 글을 작성하는 활동을 보조하기 위해 YOLO와 GPT를 활용한 SNS 문장 작성 보조 시스템을 제안한다. YOLO 모델을 활용하여 글 작성 시 삽입되는 이미지에서 객체를 추출하고 메타정보인 GPS 정보, 생성 시간 정보도 추출하여 함께 GPT의 프롬프트 값으로 사용한다. YOLO 모델을 사용하기 위해 양식 이미지 데이터로 학습하여 사용했으며 해당 모델의 mAP score는 평균 약 0.25이다. GPT는 '맛집 리뷰' 주제의 1,000개의 블로그 텍스트 데이터를 학습하였으며, 본 연구에서 학습된 모델을 사용하여 이미지에서 추출한 2가지 타입의 키워드로 문장을 생성하였다. 생성된 문장의 실용성을 평가하기 위해 설문을 진행하였으며 설문 결과의 명확한 분석을 위해 폐쇄형 설문을 진행하였다. 삽입한 이미지와 키워드 문장을 제공하여 질문에 대해 3가지 평가 항목을 두어 진행하였다. 설문 결과 이미지의 핵심 키워드 경우 유의미한 문장을 생성한다는 결과를 얻을 수 있었다. 본 연구를 통해서 이미지 기반 문장 생성 시 이미지 키워드와 GPT 학습 내용과의 관계에 따라 결과물의 정확성이 달라진다는 결과를 얻을 수 있었다.

Using ChatGPT as a proof assistant in a mathematics pathways course

  • Hyejin Park;Eric D. Manley
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.139-163
    • /
    • 2024
  • The purpose of this study is to examine the capabilities of ChatGPT as a tool for supporting students in generating mathematical arguments that can be considered proofs. To examine this, we engaged students enrolled in a mathematics pathways course in evaluating and revising their original arguments using ChatGPT feedback. Students attempted to find and prove a method for the area of a triangle given its side lengths. Instead of directly asking students to prove a formula, we asked them to explore a method to find the area of a triangle given the lengths of its sides and justify why their methods work. Students completed these ChatGPT-embedded proving activities as class homework. To investigate the capabilities of ChatGPT as a proof tutor, we used these student homework responses as data for this study. We analyzed and compared original and revised arguments students constructed with and without ChatGPT assistance. We also analyzed student-written responses about their perspectives on mathematical proof and proving and their thoughts on using ChatGPT as a proof assistant. Our analysis shows that our participants' approaches to constructing, evaluating, and revising their arguments aligned with their perspectives on proof and proving. They saw ChatGPT's evaluations of their arguments as similar to how they usually evaluate arguments of themselves and others. Mostly, they agreed with ChatGPT's suggestions to make their original arguments more proof-like. They, therefore, revised their original arguments following ChatGPT's suggestions, focusing on improving clarity, providing additional justifications, and showing the generality of their arguments. Further investigation is needed to explore how ChatGPT can be effectively used as a tool in teaching and learning mathematical proof and proof-writing.