Acknowledgement
이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2021R1I1A3052234)
References
- Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for programming assignments. Computer science education, 15(2), 83-102. https://doi.org/10.1080/08993400500150747
- Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
- Chow, K., Grabke, E. P., Lee, J., Yoo, J., Musselman, K. E., & Masani, K. (2017). Development of visual feedback training using functional electrical stimulation therapy for balance rehabilitation. STEM Fellowship Journal, 3(2), 1-2.
- Crow, T., Luxton-Reilly, A., & Wuensche, B. (2018). Intelligent tutoring systems for programming education: a systematic review. In Proceedings of the 20th Australasian Computing Education Conference, 53-62.
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
- Edwards, S. H., & Perez-Quinones, M. A. (2008). Web-CAT: automatically grading programming assignments. In Proceedings of the 13th annual conference on Innovation and technology in computer science education, 328-328.
- Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A., Fu, S., et al. (2021). GraphCodeBERT: Pre-training Code Representations with Data Flow. arXiv 2021, arXiv:2009.08366v3.
- Guo, T.; Gao, H. Content Enhanced BERT-based Text-to-SQL Generation. arXiv 2020, arXiv:1910.07179v5.
- Harvey, B., & Monig, J. (2010). Bringing "no ceiling" to scratch: Can one language serve kids and computer scientists. Proc. Constructionism, 1-10.
- Ifenthaler, D. (2017). Are higher education institutions prepared for learning analytics? TechTrends, 61(4), 366-371. https://doi.org/10.1007/s11528-016-0154-0
- Jeon, I. S., & Song, K. S. (2019). The Effect of learning analytics system towards learner's computational thinking capabilities. In Proceedings of the 2019 11th International Conference on Computer and Automation Engineering, 12-16.
- Keuning, H., Heeren, B., & Jeuring, J. (2021). A tutoring system to learn code refactoring. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, 562-568.
- Kim, S. H. (2015). Analysis of Non-Computer Majors' Difficulties in Computational Thinking Education. The Journal of Korean association of computer education, 18(3), 49-57. https://doi.org/10.32431/KACE.2015.18.3.005
- Koyya, P., Lee, Y., & Yang, J. (2013). Feedback for programming assignments using software-metrics and reference code. International Scholarly Research Notices.
- Lamb, A., & Johnson, L. (2011). Scratch: computer programming for 21st century learners, Teacher Librarian, 38, 64-68.
- Le, N. T., Strickroth, S., Gross, S., & Pinkwart, N. (2013). A review of AI-supported tutoring approaches for learning programming. Advanced Computational Methods for Knowledge Engineering, 267-279.
- Lee, J. Y., Kim, J. M., & Lee, W. G. (2019). A Study on Partial Scoring in Text Based Program Evaluation. The Journal of Korean Association of Computer Education, 22(2), 29-38. https://doi.org/10.32431/KACE.2019.22.2.004
- Lin, C. Y. (2004). Rouge: A package for automatic evaluation of summaries. In Text summarization branches out, 74-81.
- Lister, R. (2011). Computing education research programming, syntax and cognitive load. ACM Inroads, 2(2), 21-22. https://doi.org/10.1145/1963533.1963539
- Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice: urban youth learning programming with scratch. In Proceedings of the 39th SIGCSE technical symposium on Computer science education, 367-371.
- Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming language and environment. ACM Transactions on Computing Education, 10(4), 1-15.
- Ministry of Education. (2015). Practical (technical/ family) and Information curriculum. (Separate Book 10), Sejong: Ministry of Education, Science and Technology.
- Moreno-Leon, J., Robles, G., & Roman-Gonzalez, M. (2015). Dr. Scratch: analisis automatico de proyectos Scratch para evaluar y fomentar el Pensamiento Computacional. Revista de Educacion a Distancia(RED), 46.
- Krogstie, J., Opdahl, A.L. and Brinkkemper, S. (2007). Conceptual Modeling in Information Systems Engineering, Springer.
- Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002). Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, 311-318.
- Price, T. W., & Barnes, T. (2017). Position paper: Block-based programming should offer intelligent support for learners. In 2017 IEEE Blocks and Beyond Workshop (B&B), 65-68.
- Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
- Seo, J. H., & Kim, Y. S. (2016). Development and Application of Teaching-Learning Strategy for PBL-based Programming Education Using Reflection Journal in Elementary School. Journal of The Korean Association of Information Education, 20(5), 465-474. https://doi.org/10.14352/jkaie.20.4.465
- Song, J. H., Lee, J. Y., Seo, Y. H., & Kim, H. S. (2021). A Study on the Development Policy of AI and SW Talent in the Fourth Industrial Revolution. Reserch Report RE-101, SPRI.
- Spacco, J., & Pugh, W. (2006). Helping students appreciate test-driven development (TDD). In Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming systems, languages, and applications, 907-913.
- Sun, Z., Zhu, Q., Xiong, Y., Sun, Y., Mou, L., Zhang, L. (2019). TreeGen: A Tree-Based Transformer Architecture for Code Generation. arXiv 2019, arXiv:1911.09983v2.
- Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems, 3104-3112.
- Trower, J., & Gray, J. (2015). Blockly language creation and applications: Visual programming for media computation and bluetooth robotics control. In Proceedings of the 46th ACM Technical Symposium on Computer Science Education, 5-5.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems, 5998-6008.
- Von Wangenheim, C. G., Hauck, J. C., Demetrio, M. F., Pelle, R., da Cruz Alves, N., Barbosa, H., & Azevedo, L. F. (2018). CodeMaster--Automatic Assessment and Grading of App Inventor and Snap! Programs. Informatics in Education, 17(1), 117-150. https://doi.org/10.15388/infedu.2018.08
- Vujosevic-Janicic, M., Nikolic, M., Tosic, D., & Kuncak, V. (2013). Software verification and graph similarity for automated evaluation of students' assignments. Information and Software Technology, 55(6), 1004-1016. https://doi.org/10.1016/j.infsof.2012.12.005