• Title/Summary/Keyword: GPS system

Search Result 3,091, Processing Time 0.036 seconds

Case Study of the Shallow Seismic Refraction Survey using Wave Glider (웨이브글라이더를 이용한 천해저 탄성파 굴절법 탐사 사례)

  • Kim, Young-Jun;Cheong, Snons;Koo, Nam-Hyung;Chun, Jong-Hwa;Kim, Jeong-Ki;Hwang, Kyu-Duk;Lee, Ho-Young;Heo, Sin;Moon, Ki-Don;Jeong, Cheol-Hun;Hong, Sung-Du
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • The applicability of refraction survey has been tested using a wave glider widely used in long-term ocean observations around the world. To record seismic refractions, a single channel streamer with metal weight and a seismic recording system were mounted on the wave glider. We used GPS precise time synchronization signal and radio frequency (RF) communication to synchronize shot and recorder triggers and to control acquired data quality in real time. When the wave glider is positioned close to the set point, a 2,000 J sparker is exploded along the designed track at 2 second intervals. Through the test survey, we were able to successfully acquire refractions from the subsurface.

A Link Travel Time Estimation Algorithm Based on Point and Interval Detection Data over the National Highway Section (일반국도의 지점 및 구간검지기 자료의 융합을 통한 통행시간 추정 알고리즘 개발)

  • Kim, Sung-Hyun;Lim, Kang-Won;Lee, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.135-146
    • /
    • 2005
  • Up to now studies on the fusion of travel time from various detectors have been conducted based on the variance raito of the intermittent data mainly collected by GPS or probe vehicles. The fusion model based on the variance ratio of intermittent data is not suitable for the license plate recognition AVIs which can deal with vast amount of data. This study was carried out to develop the fusion model based on travel time acquired from the license plate recognition AVIs and the point detectors. In order to fuse travel time acquired from the point detectors and the license plate recognition AVIs, the optimized fusion model and the proportional fusion model were developed in this study. As a result of verification, the optimized fusion model showed the superior estimation performance. The optimized fusion model is the dynamic fusion ratio estimation model on real time base, which calculates fusion weights based on real time historic data and applies them to the current time period. The results of this study are expected to be used effectively for National Highway Traffic Management System to provide traffic information in the future. However, there should be further studies on the Proper distance for the establishment of the AVIs and the license plate matching rate according to the lanes for AVIs to be established.

GIS and Geographically Weighted Regression in the Survey Research of Small Areas (지역 단위 조사연구와 공간정보의 활용 : 지리정보시스템과 지리적 가중 회귀분석을 중심으로)

  • Jo, Dong-Gi
    • Survey Research
    • /
    • v.10 no.3
    • /
    • pp.1-19
    • /
    • 2009
  • This study investigates the utilities of spatial analysis in the context of survey research using Geographical Information System(GIS) and Geographically Weighted Regression (GWR) which take account of spatial heterogeneity. Many social phenomena involve spatial dimension, and with the development of GIS, GPS receiver, and online location-based services, spatial information can be collected and utilized more easily, and thus application of spatial analysis in the survey research is getting easier. The traditional OLS regression models which assume independence of observations and homoscedasticity of errors cannot handle spatial dependence problem. GWR is a spatial analysis technique which utilizes spatial information as well as attribute information, and estimated using geographically weighted function under the assumption that spatially close cases are more related than distant cases. Residential survey data from a Primary Autonomous District are used to estimate a model of public service satisfaction. The findings show that GWR handles the problem of spatial auto-correlation and increases goodness-of-fit of model. Visualization of spatial variance of effects of the independent variables using GIS allows us to investigate effects and relationships of those variables more closely and extensively. Furthermore, GIS and GWR analyses provide us a more effective way of identifying locations where the effect of variable is exceptionally low or high, and thus finding policy implications for social development.

  • PDF

3-D Gravity Terrain Inversion for High Resolution Gravity Survey (고정밀 중력 탐사를 위한 3차원 중력 지형 역산 기법)

  • Park, Gye-Soon;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.691-697
    • /
    • 2005
  • Recently, the development of accurate gravity-meter and GPS make it possible to obtain high resolution gravity data. Though gravity data interpretation like modeling and inversion has significantly improved, gravity data processing itself has improved very little. Conventional gravity data processing removes gravity effects due to mass and height difference between base and measurement level. But, it would be a biased density model when some or whole part of anomalous bodies exist above the base level. We attempted to make a multiquadric surface of the survey area from topography with DEM (Digital Elevation Map) data. Then we constituted rectangular blocks which reflect real topography of the survey area by the multiquadric surface. Thus, we were able to carry out 3-D inversions which include information of topography. We named this technique, 3-D Gravity Terrain Inversion (3DGTI). The model test showed that the inversion model from 3DGTI made better results than conventional methods. Furthermore, the 3-dimensional model from the 3DGTI method could maintain topography and as a result, it showed more realistic geologic model. This method was also applied on real field data in Masan-Changwon area. Granitic intrusion is an important geologic characteristic in this area. This method showed more critical geological boundaries than other conventional methods. Therefore, we concluded that in the case of various rocks and rugged terrain, this new method will make better model than convention ones.

Desirable Suggestions for Korean Geo-technology R&D through Analysis of the Global Grand Challenges and Moonshot Projects (글로벌 과학난제 도전연구프로젝트 분석을 통한 우리나라 지질자원기술에의 바람직한 제언)

  • Kim, Seong-Yong;Sung, Changmo
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.111-120
    • /
    • 2020
  • Remarkable scientific and technological achievements are mainly shown in the 'super-convergence' or 'convergence of convergence' among cross- disciplinary fields, and advanced countries are promoting the 'high-risk, high-return research' ecosystem. Google LLC is carrying out numerous new challenges in terms of a non-failure perspective. Innovative research by the US Defense Advanced Research Projects Agency (DARPA) has produced such breakthroughs as the Internet, GPS, semiconductors, the computer mouse, autonomous vehicles, and drones. China is pioneering a 'Moon Village' and planning the world's largest nuclear fusion energy and ultra-large particle accelerator project. Japan has also launched 'the moonshot technology development research system' to promote disruptive innovation. In Korea, the government is preparing a new research program to tackle the global scientific challenges. Therefore, it is necessary to determine the reasonable geoscientific challenges to be addressed and to conduct a preliminary study on these topics. For this purpose, it is necessary to conduct long-term creative research projects centered on young researchers, select outstanding principal investigators, extract innovative topics without prior research or reference, simplify research proposal procedures, innovate the selection solely based on key ideas, and evaluate results by collective intelligence in the form of conferences.

Performance Test of the WAAS Tropospheric Delay Model for the Korean WA-DGNSS (한국형 WA-DGNSS를 위한 WAAS 대류층 지연 보정모델의 성능연구)

  • Ahn, Yong-Won;Kim, Dong-Hyun;Bond, Jason;Choi, Wan-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.523-535
    • /
    • 2011
  • The precipitable water vapor (PW) was estimated using Global Navigation Satellite System (GNSS) from several GNSS stations within the Korean Peninsula. Nearby radiosonde sites covering the GNSS stations were used for the comparison and validation of test results. GNSS data recorded under typical and severe weather conditions were used to generalize our approach. Based on the analysis, we have confirmed that the derived PW values from the GNSS observables were well agreed on the estimates from the radiosonde observables within 10 mm level. Assuming that the GNSS observables could be a good weather monitoring tool, we further tested the performance of the current WAAS tropospheric delay model, UNB3, in the Korean Peninsula. Especially, the wet zenith delays estimated from the GNSS observables and from UNB3 delay model were compared. Test results showed that the modelled approach for the troposphere (i.e., UNB3) did not perform well especially under the wet weather conditions in the Korean Peninsula. It was suggested that a new model or a near real-time model (e.g., based on regional model from GNSS or numerical weather model) would be highly desirable for the Korean WA-DGNSS to minimize the effects of the tropospheric delay and hence to achieve high precision vertical navigation solutions.

Design and Implementation of the Stop line and Crosswalk Recognition Algorithm for Autonomous UGV (자율 주행 UGV를 위한 정지선과 횡단보도 인식 알고리즘 설계 및 구현)

  • Lee, Jae Hwan;Yoon, Heebyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.271-278
    • /
    • 2014
  • In spite of that stop line and crosswalk should be aware of the most basic objects in transportation system, its features extracted are very limited. In addition to image-based recognition technology, laser and RF, GPS/INS recognition technology, it is difficult to recognize. For this reason, the limited research in this area has been done. In this paper, the algorithm to recognize the stop line and crosswalk is designed and implemented using image-based recognition technology with the images input through a vision sensor. This algorithm consists of three functions.; One is to select the area, in advance, needed for feature extraction in order to speed up the data processing, 'Region of Interest', another is to process the images only that white color is detected more than a certain proportion in order to remove the unnecessary operation, 'Color Pattern Inspection', the other is 'Feature Extraction and Recognition', which is to extract the edge features and compare this to the previously-modeled one to identify the stop line and crosswalk. For this, especially by using case based feature comparison algorithm, it can identify either both stop line and crosswalk exist or just one exists. Also the proposed algorithm is to develop existing researches by comparing and analysing effect of in-vehicle camera installation and changes in recognition rate of distance estimation and various constraints such as backlight and shadow.

Availability Evaluation of Quasi Static RTK Positioning for Construction of High Rise Buildings and Civil Structures (고가(高架)구조물의 정위치 시공을 위한 준스태틱RTK 측위의 적용성 실험)

  • Kim, In-Seop
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.119-126
    • /
    • 2011
  • During precise survey on the top of High rise buildings and civil structures, optical surveying equipments like a Total Station are not recommended to use because of some reasons that uneasier alignment with reflectors located at the top of building, increasing error depends on increasement of observation distance and unavailable dynamic positioning etc. Recently various GPS positioning methods have been applied to this job however almost of them are post-processing method which is required much longer time during for whole process includes stake-out, cross checking, fixing positions and final inspections. Therefore, in this study, we applied with RTK surveying system which allows stake-out and inspection in realtime to avoid delaying of construction schedule and also applied with Quasi Static RTK measurement and network adjustment to get a high accuracy within a few millimeters in structure positioning to achieve a successful management for process and quality control of the project. As a result, very high accurate surveying for structures within approx. 2mm in realtime has been achieved when surveyor conduct a network adjustment using least square method for 4 base lines created by Quasi Static RTK data and we expect this method will be applied to construction survey for high rise buildings and civil structures in the future.

A fundamental study on the installation methods of automatic identification buoy on coastal gill net (연안자망 부이에 어구자동식별 장치 설치방안에 관한 기초적 연구)

  • HEO, Nam-Hee;KANG, Kyoung-Bum;KOO, Myeong-Seong;KIM, Keun-Hyong;KIM, Jong-Bum;JWA, Min-Seok;KIM, Jun-Teck;JOUNG, Joo-Myeong;KIM, Byung-Yeob;KIM, Suk-Jong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.294-302
    • /
    • 2019
  • As a series of fundamental researches on the development of an automatic identification monitoring system for fishing gear. Firstly, the study on the installation method of automated identification buoy for the coastal improvement net fishing net with many loss problems on the west coast was carried out. Secondly, the study was conducted find out how to install an automatic identification buoy for coastal gill net which has the highest loss rate among the fisheries. GPS for fishing was used six times in the coastal waters around Seogwipo city in Jeju Island to determine the developmental status and underwater behavior to conduct a field survey. Next, a questionnaire was administered in parallel on the type of loss and the quantity and location of fishing gear to be developed and the water transmitter. In the field experiment, the data collection was possible from a minimum of 13 hours, ten minutes to a maximum of 20 hours and ten minutes using GPS, identifying the development status and underwater behavior of the coastal gillnet fishing gear. The result of the survey showed that the loss of coastal net fishing gear was in the following order: net (27.3%), full fishing gear (24.2%), buoys, and anchors (18.2%). The causes were active algae (50.0%), fish catches (33.3%) and natural disasters (12.5%). To solve this problem, the installation method is to attach one and two electronic buoys to top of each end of the fishing gear, and one underwater transmitter at both ends of the float line connected to the anchor. By identifying and managing abnormal conditions such as damage or loss of fishing gear due to external factors such as potent algae and cutting of fishing gear, loss of fishing gear can be reduced. If the lost fishing gear is found, it will be efficiently collected.

Development and Evaluation of Global Fringe Search Software for the Preprocess of Daejoen Correlator (대전 상관기의 전처리를 위한 광역 프린지 탐색 소프트웨어 개발 및 시험)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yun, Young-Joo;Yeom, Jae-Hwan;Oh, Chung-Sik;Kurayama, Tomoharu;Chung, Dong-Kyu;Jung, Jin-Seung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.176-182
    • /
    • 2014
  • This paper introduces the development of global fringe search (GFS) software for preprocessing of Daejeon Correlator. In case of the VLBI observation, a observer conducts the observation for the reference sources with strong and point-like radio stars on schedule in order to confirm the well-observedness of the radio source by the radio telescope. The correlator performs the correlation for the reference sources to detect the fringe completely. We developed the GFS software by calculating the precise delay time between each observatory based on specific observatory. Then, this software calculates the precise delay time by using the delay model (correlator model) of reference source and information of time offset between the Hydrogen Maser frequency standard and GPS (Global Positioning System) clock located in each observatory through the correlation preprocessing. In order to confirm the performance of the developed software, experiments were carried out for the reference sources and target sources observed by the KaVA (KVN and VERA Array). Experimental results show that the GFS software has effectively good performance by finding the precise delay time offset according to the comparison between the compensated delay time offset and one without compensation.