DOI QR코드

DOI QR Code

Performance Test of the WAAS Tropospheric Delay Model for the Korean WA-DGNSS

한국형 WA-DGNSS를 위한 WAAS 대류층 지연 보정모델의 성능연구

  • Ahn, Yong-Won (GPS Research Laboratory, Geodesy and Geomatics Engineering, University of New Brunswick) ;
  • Kim, Dong-Hyun (GPS Research Laboratory, Geodesy and Geomatics Engineering, University of New Brunswick) ;
  • Bond, Jason (Gemini Navsoft Technologies Inc.) ;
  • Choi, Wan-Sik (ETRI (Electronics and Telecommunications Research Institute))
  • Received : 2011.08.07
  • Accepted : 2011.08.30
  • Published : 2011.08.31

Abstract

The precipitable water vapor (PW) was estimated using Global Navigation Satellite System (GNSS) from several GNSS stations within the Korean Peninsula. Nearby radiosonde sites covering the GNSS stations were used for the comparison and validation of test results. GNSS data recorded under typical and severe weather conditions were used to generalize our approach. Based on the analysis, we have confirmed that the derived PW values from the GNSS observables were well agreed on the estimates from the radiosonde observables within 10 mm level. Assuming that the GNSS observables could be a good weather monitoring tool, we further tested the performance of the current WAAS tropospheric delay model, UNB3, in the Korean Peninsula. Especially, the wet zenith delays estimated from the GNSS observables and from UNB3 delay model were compared. Test results showed that the modelled approach for the troposphere (i.e., UNB3) did not perform well especially under the wet weather conditions in the Korean Peninsula. It was suggested that a new model or a near real-time model (e.g., based on regional model from GNSS or numerical weather model) would be highly desirable for the Korean WA-DGNSS to minimize the effects of the tropospheric delay and hence to achieve high precision vertical navigation solutions.

한반도 지역의 GNSS 관측소의 자료들을 처리하여 가강수량을 추정하였고, 그 결과를 기상 관측 장비인 radiosonde의 추정치와 비교하였다. 실험 조건을 일반화하기 위하여, 데이터는 일반적인 기상 조건과 악화되는 기상 조건을 이용하였다. GNSS의 자료들에서 처리한 결과들은 연구에서 이용한 고 해상도의 기상 관측 장비의 예측 값들과 대부분10 mm내외에서 서로 일치하였다. 따라서GNSS가 고해상도 기상 대체 장비라는 가정하에서, 현재 WAAS 대류층 지연 모델로 쓰이고 있는 UNB3 모델이 한반도 내에서 적절한 모델로 쓰일 수 있는지에 대한 적용 가능성에 대한 실험을 수행하였다. 빠르게 변화하는 총 습윤 지연 값에 대한 결과를 비교한 결과, UNB3의 대류층 지연 모델은 한반도와 같은 습한 지역 내에서는 보정 모델로 부적절하다는 예측 결과를 보였다. 결과적으로, 향후 한국형 SBAS인 WA-DGNSS의 경우, 대류층 지연 영향을 최소화하여 고정밀 vertical 항행 해를 얻기 위해서는 현재 WAAS에서 쓰이는 기존 대류층 모델을 직접 이용하기 보다는 향후 한반도의 기상 상황에 적절히 대처할 수 있는 새로운 대류층 지연 모델이나 GNSS 관측치 또는 기상수치모델을 이용한 준 실시간 모델이 적절할 것으로 조사되었다.

Keywords

References

  1. Z. Zhu and F. van Graas, "Tropospheric Delay Threats for the Ground Based Augmentation System," Proc. ION ITM, San Diego, CA, 2011 .
  2. T. Oguchi, "Electromagnetic Wave Propagation and Scattering in Rain and Other Hydrometeors", Proc.oftheIEEE,Vol.71,No.9.pp.1029-1078,1983.
  3. G. D. Thayer, "An improved equation for the radio refractive index of air", Radio Science, Vol.9, No.10, pp. 803-807, 1974. https://doi.org/10.1029/RS009i010p00803
  4. T. Schuler, "On Ground-Based GPS Tropospheric Delay Estimation", PhDThesis, University of Munchen, 2001.
  5. U. Hugentobler, S. Schaer, and P. Fridez, "Bernese GPS Software Version 4.2", Astronomical Institute, University Berne, Switzerland, 2001.
  6. V. B. Mendes and R.B. Langley, "Zenith Wet Tropospheric Delay Determination Using Prediction Model: Accuracy Analysis", Cartograpiae Cadastro,Vol.2,pp. 41-47, 1995.
  7. J. Boehm and H. Schuh, "Vienna Mapping Functions", 16thWorkingMeetingon European VLBI for Geodesy and Astrometry, Leipzig, pp. 131-143, 2003.
  8. Y. W. Ahn, "Analysis of NGS CORS Network for GPS RTK Performance Using External NOAA Tropospheric Corrections Integrated with a Multiple Reference Station Approach" MSc Thesis,UCGE Report Number 20211, Department of Geomatics Engineering,University of Calgary, Canada, 2005.
  9. Y. W. Ahn, D. Kim, P. Dare, and R. B. Langley, "Long baseline GPS RTK performance in a marine environment using NWP ray-tracing technique under varying tropospheric conditions", Proc. of ION GNSS, Long Beach, California, U.S.A., pp 2092-2103, 2005.
  10. R. Ghoddousi-Fard, "Modelling Tropospheric Gradients and Parameters from NWP Models: Effects on GPS Estimates", Ph.D Thesis, Geodesy and Geomatics Engineering, University of New Brunswick, 2009.
  11. Moon, Y., "Water Vapor Estimation using GPS Observables", MScThesis, Department of Astronomyand Space Science, Yonsei University, South Korea,1998.
  12. J. Saastamoinen, "Atmospheric correction for troposphere and stratosphere in radio ranging if satellites", Geophysical monograph 15, American Geophysical Union, Washington, D.C., USA, pp.247-252, 1972.
  13. J. L. Davis, T. A. Herring, I. I. Sharpiro, A. E. E. Rogers, and G. Elgerred, "Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length", RadioScience,Vol.20,No.6,pp.1593-1607,1985 .
  14. M. Meindl, S. Schaer, U. Hugentobler, and G. Beutler, "Tropospheric gradient estimated at CODE: Results from global solutions", Journal of Meteorological Society of Japan, Vol. 82 (1B), pp. 331-338, 2004. https://doi.org/10.2151/jmsj.2004.331
  15. P. Collins, R. B. Langley, and J. LaMance, "Limiting Factors in Tropospheric Propagation Delay Error Modelling for GPS Airborne Navigation", The Institute of Navigation 52nd Annual Meeting, Cambridge, Massachusetts, USA, 1996.
  16. W. L. Smith, "Note on the relationship between total precipitable water and surface dew point." Journal of Applied Meteorology, Vol.5, October, pp.726-727,1966. https://doi.org/10.1175/1520-0450(1966)005<0726:NOTRBT>2.0.CO;2
  17. KMA, "Korea Meteorological Administration", http://www.kma.go.kr/, accessed in 2002.
  18. Y.W., Ahn, D. Kim, and P. Dare, "Positioning Impacts from Imbalanced Atmospheric GPS Network Errors", Proc. of ION GNSS, Fort Worth, Texas, U.S.A, pp. 2302-2312, 2007.

Cited by

  1. 한반도 지역 SBAS 대류층 지연 보정 모델의 정확도 검증 vol.20, pp.1, 2011, https://doi.org/10.12673/jant.2016.20.1.23