• Title/Summary/Keyword: GPS spoofing detection

Search Result 14, Processing Time 0.021 seconds

Analysis of Performance of Spoofing Detection Algorithm in GPS L1 Signal (GPS L1 기만신호 검출 알고리즘 성능 분석)

  • Kim, Taehee;Kim, Jaehoon;Lee, Sanguk
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.29-35
    • /
    • 2013
  • In this paper, we investigate the type and detection methode of spoofing attack, and then analyze the performance of spoofing detection algorithm in GPS L1 signal through the simulation. Generally spoofer is different from the jammer, because the receiver can be operated and not. In case of spoofing the GPS receiver is hard to recognize the spoofing attack and can be operated normally without stopping because the spoofing signal is the mimic GPS signal. To evaluate the performance of spoofing detection algorithm, both the software based spoofing and GPS signal generator and the software based GPS receiver are implemented. In paper, we can check that spoofing signal can affect to the DLL and PLL tracking loop because code delay and doppler frequency of spoofing. The spoofing detection algorithm has been implemented using the pseudorange, signal strength and navigation solution of GPS receiver and proposed algorithm can effectively detect the spoofing signal.

Design of GPS L1 C/A Spoofing Signal Detection Algorithm (GPS L1 C/A 기만 신호 검출 기법 설계)

  • Lim, Soon;Lim, Deok-Won;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • In this paper, an effect on a GPS receiver by spoofing signal is analyzed and a GPS spoofing signal detection algorithm for GPS L1 C/A spoofing signal is proposed. A proposed detection algorithm monitors the correlation function distortion by the spoofing signal. If detected distortion is over a detection threshold, we can determine that the spoofing signal is received. The detection threshold is calculated from the statistical characteristics of a thermal noise. For verifying the suggested algorithm, a MATLAB-based simulation platform is implemented. This platform has functionalities to track GPS signal and measure the correlation values. By using this platform, the correlation function distortion by spoofing signal is observed. Also a performance of the algorithm proposed in this paper is applied and confirm the detection of a spoofing signal.

A Spoofing Detection Scheme Based on Elevation Masked-Relative Received Power in GPS Receivers using Multi-band Array Antenna

  • Junwoo Jung;Hyunhee Won;Sungyeol Park;Haengik Kang;Seungbok Kwon;Byeongjin Yu;Seungwoo Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Many spoofing detection studies have been conducted to cope with the most difficult types of deception among various disturbances of GPS, such as jamming, spoofing, and meaconing. In this paper, we propose a spoofing detection scheme based on elevation masked-relative received power between GPS L1 and L2 signals in a system using a multi-band array antenna. The proposed scheme focuses on enabling spoofing to be normally detected and minimizes the possibility of false detection in an environment where false alarms may occur due to pattern distortion among elements of an array antenna. The pattern distortion weakens the GPS signal strength at low elevation. It becomes confusing to detect a spoofing signal based on the relative power difference between GPS L1 and L2, especially when GPS L2 has weak signal strength. We propose design parameters for the relative power threshold including beamforming gain, the minimum received power difference between L1 and L2, and the patch antenna gain difference between L1 and L2. In addition, in order to eliminate the weak signal strength of GPS L2 in the spoofing detection process, we propose a rotation matrix that sets the elevation mask based on platform coordinates. Array antennas generally do not have high usefulness in commercial areas where receivers are operated alone, but are considered essential in military areas where GPS receivers are used together with signal processing for beamforming in the direction of GPS satellites. Through laboratory and live sky tests using the device under test, the proposed scheme with an elevation mask detects spoofing signals well and reduces the probability of false detection relative to that without the elevation mask.

Design and Performance Evaluation of GPS Spoofing Signal Detection Algorithm at RF Spoofing Simulation Environment

  • Lim, Soon;Lim, Deok Won;Chun, Sebum;Heo, Moon Beom;Choi, Yun Sub;Lee, Ju Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.173-180
    • /
    • 2015
  • In this study, an algorithm that detects a spoofing signal for a GPS L1 signal was proposed, and the performance was verified through RF spoofing signal simulation. The proposed algorithm determines the reception of a spoofing signal by detecting a correlation distortion of GPS L1 C/A code caused by the spoofing signal. To detect the correlation distortion, a detection criterion of a spoofing signal was derived from the relationship among the Early, Prompt, and Late tap correlation values of a receiver correlator; and a detection threshold was calculated from the false alarm probability of spoofing signal detection. In this study, an RF spoofing environment was built using the GSS 8000 simulator (Spirent). For the RF spoofing signal generated from the simulator, the RF spoofing environment was verified using the commercial receiver DL-V3 (Novatel Inc.). To verify the performance of the proposed algorithm, the RF signal was stored as IF band data using a USRP signal collector (NI) so that the data could be processed by a CNU software receiver (software defined radio). For the performance of the proposed algorithm, results were obtained using the correlation value of the software receiver, and the performance was verified through the detection of a spoofing signal and the detection time of a spoofing signal.

Spoofing Signal Detection Using Accelerometers in IMU and GPS Information (IMU 가속도계 센서와 GPS 정보를 이용한 기만신호 검출)

  • Kwon, Keum-Cheol;Yang, Cheol-Kwan;Shim, Duk-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1273-1280
    • /
    • 2014
  • This paper considers a GPS anti-spoofing problem. Spoofing is an intentional interference that mislead the GNSS receiver. The spoofing attack is very significant since the target receiver is not aware of being attacked from spoofing. Accelerometers can be used to detect the spoofing signal by being compared with the acceleration obtained from GPS information using Kalman filter. In this paper we propose an N by N-point average and M-point window algorithm to detect GPS spoofing by using accelerometers and GPS outputs. The performance of the proposed algorithm is analyzed using actual vehicle trajectory and spoofing trajectory generated from INS and GPS toolbox for simulation.

Anti-Spoofing Method Using Double Peak Detection in the Two-Dimensional C/A Code Search Space (이차원 C/A 코드 검색 공간에서의 이중피크 검출을 이용한 기만신호 대응 기법)

  • Kwon, Keum-Cheol;Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.157-164
    • /
    • 2013
  • In the presence of spoofing signal the GPS signal having the same PRN with the spoofer is hard to be acquired since the power of spoofing signal is usually stronger than that of GPS signal. If a spoofing signal exists for the same PRN, there are double peaks in two-dimensional space of frequency and code phase in acquisition stage. Using double peak information it is possible to detect spoofing signal and acquire GPS information through separate channel tracking. In this paper we introduce an anti-spoofing method using double peak detection, and thus can acquire GPS navigation data after two-channel tracking for the same PRN as the spoofing signal.

Simulation of GNSS Spoofing Detection Method Using Encrypted Ranging Signal (암호화 신호원을 이용한 위성항법 기만 검출기법 모의)

  • So, Hyoungmin
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.394-400
    • /
    • 2016
  • It is well known that the encrypted ranging signal, such as GPS P(Y) code, is immune to spoofing attack. However, in order for users to use the signal, there needs permission from the operator. And also there are many restrictions for use because of security issues. In this paper, a ground reference station equipped with high-gain directional antenna and a user receiver were simulated. In the reference station, the encrypted code can be demodulated from the high-gain signal. And then the code can be used to detect spoofing attack in the user receiver. This paper proposes the spoofing detection method using the encrypted signal and deals with simulation results.

Direction of Arrival Estimation of GNSS Signal using Dual Antenna

  • Ong, Junho;So, Hyoungmin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.215-220
    • /
    • 2020
  • This paper deal with estimating the direction of arrival (DOA) of GNSS signal using two antennae for spoofing detection. A technique for estimating the azimuth angle of a received signal by applying the interferometer method to the GPS carrier signal is proposed. The experiment assumes two antennas placed on the earth's surface and estimates the azimuth angle when only GPS signal are received without spoofing signal. The proposed method confirmed the availability through GPS satellite placement simulation and experiments using a dual antenna GPS receiver. In this case of using dual antenna, an azimuth angle ambiguity of the received signal occurs with respect to the baseline between two antennas. For this reason, the accurate azimuth angle estimation is limits, but it can be used for deception by cross-validating the ambiguity.

Development of Anti-Spoofing Equipment Architecture and Performance Evaluation Test System

  • Jung, Junwoo;Park, Sungyeol;Hyun, Jongchul;Kang, Haengik;Song, Kiwon;Kim, Kapjin;Park, Youngbum
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.127-138
    • /
    • 2018
  • Spoofing attacks including meaconing can provide a bogus position to a victim GPS receiver, and those attacks are notably difficult to detect at the point of view on the receiver. Several countermeasure techniques have been studied to detect, classify, and cancel the spoofing signals. Based on the countermeasure techniques, we have developed an anti-spoofing equipment that detects and mitigates or eliminates the spoofing signal based on raw measurements. Although many anti-spoofing techniques have been studied in the literatures, the evaluation test system is not deeply studied to evaluate the anti-spoofing equipment, which includes detection, mitigation, and elimination of spoofing signals. Each study only has a specific test method to verify its anti-spoofing technique. In this paper, we propose the performance evaluation test system that includes both spoofing signal injection system and its injection scenario with the constraints of stand-alone anti-spoofing techniques. The spoofing signal injection scenario is designed to drive a victim GPS receiver that moves to a designed position, where the mitigation and elimination based anti-spoofing algorithms can be successively evaluated. We evaluate the developed anti-spoofing equipment and a commercial GPS receiver using our proposed performance evaluation test system. Although the commercial one is affected by the test system and moves to the designed position, the anti-spoofing equipment mitigates and eliminates the injected spoofing signals as planned. We evaluate the performance of anti-spoofing equipment on the position error of the circular error probability, while injecting spoofing signals.

Technical Issues on Implementation of GPS Signal Authentication System

  • So, Hyoungmin;Jang, Jaegyu;Lee, Kihoon;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.139-146
    • /
    • 2018
  • In recent years, a satellite navigation signal authentication technique has been introduced to determine the spoofing of commercial C/A code using the cross-correlation mode of GPS P(Y) code received at two receivers. This paper discusses the technical considerations in the implementation and application of authentication system simulator hardware to achieve the above technique. The configuration of the simulator consists of authentication system and user receiver. The synchronization of GPS signals received at two devices, data transmission and reception, and codeless correlation of P(Y) code were implemented. The simulation test result verified that spoofing detection using P(Y) codeless correlation could be achieved.