• Title/Summary/Keyword: GPS Navigation Solutions

Search Result 62, Processing Time 0.031 seconds

MAGIC: GALILEO and SBAS Services in a Nutshell

  • Zarraoa, N.;Tajdine, A.;Caro, J.;Alcantarilla, I.;Porras, D.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.27-31
    • /
    • 2006
  • GNSS Services and Applications are today in permanent evolution in all the market sectors. This evolution comprises: ${\bullet}$ New constellations and systems, being GALILEO probably the most relevant example, but not the only one, as other regions of the world also dwell into developing their own elements (e.g. the Chinese Beidou system). ${\bullet}$ Modernisation of existing systems, as is the case of GPS and GLONASS ${\bullet}$ New Augmentation services, WAAS, EGNOS, MSAS, GRAS, GAGAN, and many initiatives from other regions of the world ${\bullet}$ Safety of Life services based on the provision of integrity and reliability of the navigation solutions through SBAS and GBAS systems, for aeronautical or maritime applications ${\bullet}$ New Professional applications, based on the unprecedented accuracies and integrity of the positioning and timing solutions of the new navigation systems with examples in science (geodesy, geophysics), Civil engineering (surveying, construction works), Transportation (fleet management, road tolling) and many others. ${\bullet}$ New Mass-market applications based on cheap and simple GNSS receivers providing accurate (meterlevel) solutions for daily personal navigation and information needs. Being on top of this evolving market requires an active participation on the key elements that drive the GNSS development. Early access to the new GNSS signals and services and appropriate testing facilities are critical to be able to reach a good market position in time before the next evolution, and this is usually accessible only to the large system developers as the US, Europe or Japan. Jumping into this league of GNSS developers requires a large investment and a significant development of technology, which may not be at range for all regions of the world. Bearing in mind this situation, MAGIC appears as a concept initiated by a small region within Europe with the purpose of fostering and supporting the development of advanced applications for the new services that can be enabled by the advent of SBAS systems and GALILEO. MAGIC is a low cost platform based on the application of technology developed within the EGNOS project (the SBAS system in Europe), which encompasses the capacity of providing real time EGNOS and, in the near future, GALILEO-like integrity services. MAGIC is designed to be a testing platform for safety of life and liability critical applications, as well as a provider of operational services for the transport or professional sectors in its region of application. This paper will present in detail the MAGIC concept, the status of development of the system within the Madrid region in Spain, the results of the first on-field demonstrations and the immediate plans for deployment and expansion into a complete SBAS+GALILEO regional augmentation system.

  • PDF

Absolute Altitude Determination for 3-D Indoor and Outdoor Positioning Using Reference Station (기준국을 이용한 실내·외 절대 고도 산출 및 3D 항법)

  • Choi, Jong-Joon;Choi, Hyun-Young;Do, Seoung-Bok;Kim, Hyun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.165-170
    • /
    • 2015
  • The topic of this paper is the advanced absolute altitude determination for 3-D positioning using barometric altimeter and the reference station. Barometric altimeter does not provide absolute altitude because atmosphere pressure always varies over the time and geographical location. Also, since Global Navigation Satellites system such as GPS, GLONASS has geometric error, the altitude information is not available. It is the reason why we suggested the new method to improve the altitude accuracy. This paper shows 3-D positioning algorithm using absolute altitude determination method and evaluates the algorithm by real field tests. We used an accurate altitude from RTK system in Seoul as a reference data and acquired the differential value of pressure data between a reference station and a mobile station equipped in low cost barometric altimeter. In addition, the performance and advantage of the proposed method was evaluated by 3-D experiment analysis of PNS and CNS. We expect that the proposed method can expand 2-D positioning system 3-D position determination system simply and this 3-D position determination technique can be very useful for the workers in the field of fire-fighting and construction.

Performance Test of the WAAS Tropospheric Delay Model for the Korean WA-DGNSS (한국형 WA-DGNSS를 위한 WAAS 대류층 지연 보정모델의 성능연구)

  • Ahn, Yong-Won;Kim, Dong-Hyun;Bond, Jason;Choi, Wan-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.523-535
    • /
    • 2011
  • The precipitable water vapor (PW) was estimated using Global Navigation Satellite System (GNSS) from several GNSS stations within the Korean Peninsula. Nearby radiosonde sites covering the GNSS stations were used for the comparison and validation of test results. GNSS data recorded under typical and severe weather conditions were used to generalize our approach. Based on the analysis, we have confirmed that the derived PW values from the GNSS observables were well agreed on the estimates from the radiosonde observables within 10 mm level. Assuming that the GNSS observables could be a good weather monitoring tool, we further tested the performance of the current WAAS tropospheric delay model, UNB3, in the Korean Peninsula. Especially, the wet zenith delays estimated from the GNSS observables and from UNB3 delay model were compared. Test results showed that the modelled approach for the troposphere (i.e., UNB3) did not perform well especially under the wet weather conditions in the Korean Peninsula. It was suggested that a new model or a near real-time model (e.g., based on regional model from GNSS or numerical weather model) would be highly desirable for the Korean WA-DGNSS to minimize the effects of the tropospheric delay and hence to achieve high precision vertical navigation solutions.

Preliminary Analysis of Network-RTK for Navigation (차량항법용 네트워크 RTK 기반 연구)

  • Min-Ho, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.343-351
    • /
    • 2015
  • It is well-known that even the DGNSS (Differential Global Navigation Satellite System) technique in navigation for ground vehicles can only provide several meters of accuracy, such that it is suitable for simple guidance. On the other hand, centimeter to millimeter level accuracy can be obtained by using carrier phase observables in the field of precision geodesy/surveying. In this study, a preliminary study was conducted to apply NRTK (Network-RTK) by NGII (National Geographic Information Institute) to ground vehicle navigation. Onboard GNSS receivers were used for NRTK throughout the country, and the applicability of NRTK on navigation was analyzed based on NRTK surveying results. The analysis shows that the overall ambiguity fixing rate of NRTK is high and is therefore possible to apply it for navigation. In urban areas, however, the fixing rate decreases sharply, therefore, it needs to employ a method to minimize the effect of the float solutions, which can reach up to 10 meters. It is still feasible to obtain a centimeter level of accuracy in some area using NRTK under certain conditions. But, the ambiguity fixing rate of FKP falls down to 55% for high speed vehicles, and so the surveying accuracy should be determined by considering various factors of surveying environments. In addition, it is difficult to fix ambiguities using single-frequency GPS receivers. Finally, several suspicious NRTK(FKP) connection problems occurred during atmospheric disturbances (phase two or up), which should be investigated further in upcoming research.

A Comparison of Orbit Determination Performance for the KOMPSAT-2 using Batch Filter and Sequential Filter (아리랑위성 2호 데이터를 이용한 연속추정필터와 배치필터 처리 결과 비교)

  • Cho, Dong-Hyun;Kim, Hae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.149-157
    • /
    • 2012
  • In this paper, the performance of the sequential filter for a space debris collision management system is analyzed by using the flight data of KOMPSAT-2. To analyze the performance of the sequential filter, the results of batch filter used in the orbit determination system of the KOMPSAT-2 ground station is used as reference data. The overlap method is also used to evaluate the orbit accuracy. This paper shows that the orbit determination accuracy of the sequential filter is similar to that of the KOMPSAT-2 ground station, but dissimilar characteristics exist due to the filter difference. In addition, it is also shown that the orbit determination accuracy is order of 1m root mean square by using 30 hour GPS navigation solutions and 6 hour comparison period for the overlap method.

A Study on the Improvement of Domestic Navigation Safety System: Focused on the Implementation of Korea Augmentation Satellite System (국내 항행안전시스템의 개선에 관한 연구: 한국형 정밀위성항법 보강시스템의 구축을 중심으로)

  • Kim, Yeong-Pil;Hwang, Kyung Tae
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.221-230
    • /
    • 2021
  • The study attempts to suggest potential problem and solutions expected in the process of implementing KASS, which is currently under development to improve the domestic navigation safety system, and to summarize improvement effects of domestic navigation safety system anticipated by the implementation of KASS. Challenges expected in the process of implementing KASS exists in four aspects: emotional, technical, cost, safety aspects. When KASS is implemented and operates, various benefits can be realized. Benefits include cost savings by not using navigation safety systems during takeoff and landing; reduction of flight delays and cancellations by removing airway congestion; increase of aircraft accommodation capacity; reduction of carbon emissions; preparation for future aviation demands and improvement of air transportation safety; and reduction of flight accidents. In conclusion, it is expected to enter into an era of more intense competition due to increased aviation demands. In order to survive in this competitive environment, early introduction of KASS is indispensable. Analysis results of this study are expected to provide reference information for academic research in this area. A possible future research topic include a study predicting the changes in the navigation safety systems introduced by KASS and proposing practical and useful ways to respond the changes.

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.387-400
    • /
    • 2003
  • Since its launching on 21 December 1999, the Korea Multi-Purpose Satellite-I (KOMPSAT-I) has been successfully operated by the Mission Control Element (MCE), which was developed by the ETRI. Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft form injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations.

  • PDF

Analysis on the Initialization Time of Each Mode using OmniSTAR HP (OmniSTAR HP의 측위모드별 수렴시간 분석)

  • Lee, In-Su;Park, Byung-Woon;Song, June-Sol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.75-82
    • /
    • 2011
  • In this study, author analyzed the overview and the convergence time of Fixed solutions (<15cm) of OmniSTAR, one of SBAS(Satellite Based Augmentation System) as WADGPS (Wide Area Differential GPS), which can compensate the drawbacks of the existed GNSS (Global Navigation Satellite System) that require the expensive receiver and is impossible to position in case of the radio interference in urban sometimes. As a result, the test shows that the less than 15cm 3D standard deviation converges in 39 minutes at Dynamic mode and 28 minutes at Static mode. It is expected that we can apply OmniSTAR to a variety of fields such as LBS(Location Based Service), mobile positioning, and the geo-spatial information industry that does not necessarily guarantee the high position accuracy.

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Park, Hae-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.46-46
    • /
    • 2003
  • Since its launching on 21 December 1999, the KOrea Multi-Purpose SATellite-Ⅰ (KOMPSAT-Ⅰ) has been successfully operated by the Mission Control Element (MCE), which was developed by the Electronics and Telecommunications Research Institute (ETRI). Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. The Mission Analysis and Planning Subsystem (MAPS), which is one of the four subsystems in the MCE, played a key role in the Launch and Early Orbit Phase (LEOP) operations as well as the on-orbit mission operations. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft from injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations. We also present the orbital evolutions during the three years of the mission life of the KOMPSAT-Ⅰ.

  • PDF

Issue-Tree and QFD Analysis of Transportation Safety Policy with Autonomous Vehicle (Issue-Tree기법과 QFD를 이용한 자율주행자동차 교통안전정책과제 분석)

  • Nam, Doohee;Lee, Sangsoo;Kim, Namsun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.26-32
    • /
    • 2016
  • An autonomous car(driverless car, self-driving car, robotic car) is a vehicle that is capable of sensing its environment and navigating without human input. Autonomous cars can detect surroundings using a variety of techniques such as radar, lidar, GPS, odometry, and computer vision. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage. Autonomous cars have control systems that are capable of analyzing sensory data to distinguish between different cars on the road, which is very useful in planning a path to the desired destination. An issue tree, also called a logic tree, is a graphical breakdown of a question that dissects it into its different components vertically and that progresses into details as it reads to the right.Issue trees are useful in problem solving to identify the root causes of a problem as well as to identify its potential solutions. They also provide a reference point to see how each piece fits into the whole picture of a problem. Using Issue-Tree menthods, transportation safety policies were developed with autonompus vehicle in mind.