• Title/Summary/Keyword: GPS Errors

Search Result 407, Processing Time 0.018 seconds

Assessment of Positioning Accuracy of UAV Photogrammetry based on RTK-GPS (RTK-GPS 무인항공사진측량의 위치결정 정확도 평가)

  • Lee, Jae-One;Sung, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.63-68
    • /
    • 2018
  • The establishment of Ground Control Points (GCPs) in UAV-Photogrammetry is a working process that requires the most time and expenditure. Recently, the rapid developments of navigation sensors and communication technologies have enabled Unmanned Aerial Vehicles (UAVs) to conduct photogrammetric mapping without using GCP because of the availability of new methods such as RTK (Real Time Kinematic) and PPK (Post Processed Kinematic) technology. In this study, an experiment was conducted to evaluate the potential of RTK-UAV mapping with no GCPs compared to that of non RTK-UAV mapping. The positioning accuracy results produced by images obtained simultaneously from the two different types of UAVs were compared and analyzed. One was a RTK-UAV without GCPs and the other was a non RTK-UAV with different numbers of GCPs. The images were taken with a Canon IXUS 127 camera (focal length 4.3mm, pixel size $1.3{\mu}m$) at a flying height of approximately 160m, corresponding to a nominal GSD of approximately 4.7cm. As a result, the RMSE (planimetric/vertical) of positional accuracy according to the number of GCPs by the non-RTK method was 4.8cm/8.2cm with 5 GCPs, 5.4cm/10.3cm with 4 GCPs, and 6.2cm/12.0cm with 3 GCPs. In the case of non RTK-UAV photogrammetry with no GCP, the positioning accuracy was decreased greatly to approximately 112.9 cm and 204.6 cm in the horizontal and vertical coordinates, respectively. On the other hand, in the case of the RTK method with no ground control point, the errors in the planimetric and vertical position coordinates were reduced remarkably to 13.1cm and 15.7cm, respectively, compared to the non-RTK method. Overall, UAV photogrammetry supported by RTK-GPS technology, enabling precise positioning without a control point, is expected to be useful in the field of spatial information in the future.

A Study on MBES Error Data Removing using Motion Sensor (Motion Sensor를 이용한 MBES 오측자료 제거 연구)

  • Kang, Moon-Kwon;Choi, Yun-Soo;Chang, Min-Chol;Yoon, Ha-Su
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Sounding data is the essential source for the safety of ships navigation system, and fundamental to the reasonable usage and maintenance of the ocean as well. As IT tech, positioning equipment such as GPS and INS, echo sounder are developed, recently, the precise submarine topography database bas been built by Multi-Beam Echo Sounder. However, MBES data includes some inevitable error caused by several factor, and some data have errors where the terrain is wobble. The error, which causes the $moir\acute{e}$ pattern error is the main factor hindering the accuracy of MBES data results, and therefore it is necessary to figure out the main cause of the error for the improvement of the accuracy by removing error data. On this research, the main cause of the error data is studied by analyzing motion sensor value of data including the $moir\acute{e}$ pattern error. Thus, as the result of examination, it turns out that the $moir\acute{e}$ pattern error is related to the standard deviation of Roll, and error data values are results of the non-correspondence between Swath data and Roll values caused by the drastic change of Roll values. Accordingly, the error data is removed by comparing between the gradient of Swath data and Roll values. Finally, as the result of removing error data, it is expected to be able to estimate the quality of MBES using the standard deviation of Motion sensor's Roll value, and calculate the additive error factor, which minimize non-corresponding data, and also this research must be contributed to improve the accuracy of sounding for small vessels with lots of motion in the bad circumstance for navigation.

Indoor Positioning Using RFID Technique (RFID 기술을 이용한 실내 위치 추적)

  • Yoon, Chang-sun;Kim, Tae-in;Kim, Hyeon-jin;Hong, Yeon-chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.207-214
    • /
    • 2016
  • RFID technology is a technology perceiving information with the device called reader and tag which is now used in public transportation such as Hi-pass. In this paper, we design a system which tracks indoor location using this technology. GPS, the most frequently used location-tracking system, has a defect that its accuracy decreases when the device is indoor. In suggested experiment, we simulate signals according to the moving of located objects, then compare with the result of the experiment. Based on the extracted data, we inform data which is for the purpose of tracking system based on analysis of the route and errors. Simulations for the tracking were performed with relocation of real objects. In the real experiment, we arrange the readers around the room and move the tagged object that we like to know the location, then analyze the data from the equipment. This paper suggests the analyzed data for the future indoor tag tracking applications. We expect that the RFID based location positioning data will be used for other indoor positioning research and development.

Establishment of the Plane Coordinate System for Framework Data(UTM-K) in Korea (우리나라 기본지리정보 좌표계(UTM-K) 도입에 관한 연구)

  • Choi, Yun Soo;Kim Gun Soo;Park Hong Gi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.313-321
    • /
    • 2004
  • Korean government has offcially decided to adopt global geodetic reference system(ITRF and GRS80) from 2007 keeping pace with the spread of GNSS. Industries related with LBS and telematics have called for use of the new coordinate system suitable for GIS/GPS applications. The government also defined the single plane coordinate system that covers entire korean peninsula as UTM-K considering DB-based framework data and user-friendliness, and its defects were corrected while being applied to the building of road framework data. The TM projection, and origin scale factor of plane coordinate system, 0.9996were employed in order to satisfy the single plane coordinate system for the entire Korean peninsula. For the origin of plane coordinate system, longitude of $127^{\circ}$30'00" and latitude of $38^{\circ}$00'00" were applied and, for the initial value of plane coordinate system, N=2,000.000m and E=1,000,000m were used. In addition to considerable savings in costs, it is expected that the UTM-K is applicable for correcting errors occurred during acquisition of geographic information and for aggregating map data produced by different sources. However, during the initial stage for introduction, confusion is forecasted due to the use of two different coordinate systems, which may be minimized by continued publicity and education.

Line-of-Sight (LOS) Vector Adjustment Model for Restitution of SPOT 4 Imagery (SPOT 4 영상의 기하보정을 위한 시선 벡터 조정 모델)

  • Jung, Hyung-Sup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.247-254
    • /
    • 2010
  • In this paper, a new approach has been studied correcting the geometric distortion of SPOT 4 imagery. Two new equations were induced by the relationship between satellite and the Earth in the space. line-of-sight (LOS) vector adjustment model for SPOT 4 imagery was implemented in this study. This model is to adjust LOS vector under the assumption that the orbital information of satellite provided by receiving station is uncertain and this uncertainty makes a constant error over the image. This model is verified using SPOT 4 satellite image with high look angle and thirty five ground points, which include 10 GCPs(Ground Control Points) and 25 check points, measured by the GPS. In total thirty five points, the geometry of satellite image calculated by given satellite information(such as satellite position, velocity, attitude and look angles, etc) from SPOT 4 satellite image was distorted with a constant error. Through out the study, it was confirmed that the LOS vector adjustment model was able to be applied to SPOT4 satellite image. Using this model, RMSEs (Root Mean Square Errors) of twenty five check points taken by increasing the number of GCPs from two to ten were less than one pixel. As a result, LOS vector adjustment model could efficiently correct the geometry of SPOT4 images with only two GCPs. This method also is expected to get good results for the different satellite images that are similar to the geometry of SPOT images.

A Study for Improving Naval Vessels's Position Calculation and Reporting Requirements for Safe Sailing in Narrow Channels (해군함정 협수로 연안 항해시 함위산출 및 보고사항 개선에 관한 연구)

  • Ko, Jae-Woo;Lim, Bong-Taek
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.451-456
    • /
    • 2015
  • This research examines the use of Cross Bearing in the Republic of Korea Navy. Specifically, this study focuses on the degrees of errors caused by the order of measuring targets and suggests a new method to determine Advice Course. It then reviews the appropriateness of the contents of Location Report that is regularly to the duty officer during a voyage in a narrow channel. Whenever a naval vessel passes through a narrow channel, many number of sailors are assigned to diverse positions in order to enhance navigational safety. Even though it is possible to easily recognize the location of a ship with helps of various kinds of navigational equipments using state-of-the-art technology, there are still several situations where sailors' efforts are indispensible for calculating the position of their ship : when the ship is damaged during an engagement with enemies and when the enemies interfere (GPS) signals. In addition, the particularity of naval vessels in which many number of crew members can be assigned to various positions supports for the suitability of the use of Cross Bearing in the Navy. This study will contribute to navigational safety of the ROK Navy and fostering junior naval officers' seamanship.

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.