• Title/Summary/Keyword: GPS Clock

Search Result 134, Processing Time 0.034 seconds

Times Series Analysis of GPS Receiver Clock Errors to Improve the Absolute Positioning Accuracy

  • Bae, Tae-Suk;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.537-543
    • /
    • 2007
  • Since the GPS absolute positioning with pseudorange measurements can significantly be affected by the observation error, the time series analysis of the GPS receiver clock errors was performed in this study. From the estimated receiver clock errors, the time series model is generated, and constrained back in the absolute positioning process. One of the CORS (Continuously Operating Reference Stations) network is used to analyze the behavior of the receiver clock. The dominant part of the model is the linear trend during 24 hours, and the seasonal component is also estimated. After constraining the modeled receiver clock errors, the estimated position error compared to the published coordinates is improved from ${\pm}11.4\;m\;to\;{\pm}9.5\;m$ in 3D RMS.

Design of The Precise Synchronized Clock Generator using GPS (GPS를 이용한 정밀 동기 클록 발생기 설계)

  • Kim, Chan-Mo;Jo, Yong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.6
    • /
    • pp.446-455
    • /
    • 2001
  • In this paper, the precise synchronized clock generator using GPS receiver is presented. The GPS receiver provides a synchronized IPPS signal which guaranties a reliable standard time mark. This signal allows us to do time synchronization and correct the time step. We designed and implemented the precise synchronized clock generator based on DPLL in order to generate a high-resolution clock from a low-cost inaccurate oscillator with ALTERA FLEX EPM6016TC144-3. We also implemented a hardware unit and proved that the unit provides 1MHz clock output which had a high resolution and accuracy when it was combined with GPS receiver.

  • PDF

FPGA circuit implementation of despreading delay lack loop for GPS receiver and preformance analysis (GPS 수신기용 역확산 지연 동기 루프의 FPGA 회로 구현과 성능 분석)

  • 강성길;류흥균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.506-514
    • /
    • 1997
  • In this paper, we implement digital circuit of despreading delay lock loop for GPS receiver. The designed system consists of Epoch signal generator, two 13bit correlators which correlates the received C/A code and the locally generated C/A code in the receiver, the C/A code generator which generates C/A code of selected satellite, and the direct digital clock synthesizer which generates the clock of the C/A code generator to control the phase and clock rate, the clock controller, and the clock divider. The designed circuit has the function of the acquisition and tracking by the autocorrelation characteristics of Gold code. The controller generates each other control signals according to the correlation value. The designed circuit is simulated to verify the logic functional performance. By using the simulator STR-2770 that generates the virtual GPS signal, the deigned FPGA chip is verified the circuit performance.

  • PDF

Measurement Scheme for One-Way Delay Variation with Detection and Removal of Clock Skew

  • Aoki, Makoto;Oki, Eiji;Rojas-Cessa, Roberto
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.854-862
    • /
    • 2010
  • One-way delay variation (OWDV) has become increasingly of interest to researchers as a way to evaluate network state and service quality, especially for real-time and streaming services such as voice-over-Internet-protocol (VoIP) and video. Many schemes for OWDV measurement require clock synchronization through the global-positioning system (GPS) or network time protocol. In clock-synchronized approaches, the accuracy of OWDV measurement depends on the accuracy of the clock synchronization. GPS provides highly accurate clock synchronization. However, the deployment of GPS on legacy network equipment might be slow and costly. This paper proposes a method for measuring OWDV that dispenses with clock synchronization. The clock synchronization problem is mainly caused by clock skew. The proposed approach is based on the measurement of inter-packet delay and accumulated OWDV. This paper shows the performance of the proposed scheme via simulations and through experiments in a VoIP network. The presented simulation and measurement results indicate that clock skew can be efficiently measured and removed and that OWDV can be measured without requiring clock synchronization.

SBAS SIGNAL SYNCHRONIZATION

  • Kim, Gang-Ho;Kim, Do-Yoon;Lee, Taik-Jin;Kee, Changdon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.309-314
    • /
    • 2006
  • In general DGPS system, the correction message is transferred to users by wireless modem. To cover wide area, many DGPS station should be needed. And DGPS users must have a wireless modem that is not necessary in standalone GPS. But SBAS users don't need a wireless modem to receive DGPS corrections because SBAS correction message is transmitted from the GEO satellite by L1 frequency band. SBAS signal is generated in the GUS(Geo Uplink Subsystem) and uplink to the GEO satellite. This uplink transmission process causes two problems that are not existed in GPS. The one is a time delay in the uplink signal. The other is an ionospheric problem on uplink signal, code delay and carrier phase advance. These two problems cause ranging error to user. Another critical ranging error factor is clock synchronization. SBAS reference clock must be synchronized with GPS clock for an accurate ranging service. The time delay can be removed by close loop control. We propose uplink ionospheric error correcting algorithm for C/A code and carrier. As a result, the ranging accuracy increased high. To synchronize SBAS reference clock with GPS clock, I reviewed synchronization algorithm. And I modified it because the algorithm didn't consider doppler that caused by satellites' dynamics. SBAS reference clock synchronized with GPS clock in high accuracy by modified algorithm. We think that this paper will contribute to basic research for constructing satellite based DGPS system.

  • PDF

Design of Clock Synchronization Scheme for Pseudolite (의사위성 시각동기 기법 설계)

  • Hwang, Soyoung;Yu, Donghui;Lee, Juhyun;Lee, Sangjeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.74-75
    • /
    • 2013
  • Pseudolite is a contraction of the term "pseudo-satellite," used to refer to something that is not a satellite which performs a function commonly in the domain of satellites. Pseudolite are most often small transceivers that are used to create a local, ground-based GPS alternative. This paper proposes a clock synchronization scheme for pseudolite.

  • PDF

DETERMINATION OF CLOCK OFFSET USING GPS CARRIER PHASE MEASUREMENTS (GPS 반송파위상 데이터를 이용한 시계오차 추출)

  • Ha, Ji-Hyun;Park, Kwan-Dong;Lee, Chang-Bok
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.491-500
    • /
    • 2005
  • Every time laboratory in the world follows an international standard time scale and GPS (Global Positioning System) is playing an important role. Korea Research Institute of Standards and Science is also operating a permanent GPS station for time transfer. To improve the accuracy and precision of the clock offsets derived from GPS we used carrier phase measurements. In addition, we tested four different kinds of GPS satellite orbits and compared the results. The precision of the time offsets using rapid and ultra-rapid orbits was about 0.5 nanoseconds (ns). Tn the case of broadcast orbits, the precision was better than 2 ns.

An Analysis of Error Factors for Software Based Pseudolite Time Synchronization Performance Evaluation (소프트웨어 기반 의사위성 시각동기 기법 성능평가를 위한 오차 요소 분석)

  • Lee, Ju Hyun;Lee, Sun Yong;Hwang, Soyoung;Yu, Dong-Hui;Park, Chansik;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.429-436
    • /
    • 2014
  • This paper proposes three methods of the time synchronization for Pseudolite and GPS and analyzes pseudolite time synchronization error factors for software based performance evaluation on proposed time synchronization methods. Proposed three time synchronization methods are pseudolite time synchronization station construction method, method by using UTC(KRIS) clock source and GPS timing receiver based time synchronization method. Also, we analyze pseudolite time synchronization error factors such as errors of pseudolite clock and reference clock, time delay as clock transmission line, measurement error of time interval counter and error as clock synchronization algorithm to design simulation platform for performance evaluation of pseudolite time synchronization.

An Imbedded System for Time Synchronization in Distributed Environment based on the Internet (인터넷 기반 분산 환경에서 시각 동기를 위한 임베디드 시스템)

  • Hwang So-Young;Yu Dong-Hui;Li Ki-Joune
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2005
  • A computer clock has limits in accuracy and precision affected by its inherent instability, the environment elements, the modification of users, and errors of the system. So the computer clock needs to be synchronized with a standard clock if the computer system requires the precise time processing. The purpose of synchronizing clocks is to provide a global time base throughout a distributed system. Once this time base exists, transactions among members of distributed system can be controlled based on time. This paper discusses the integrated approach to clock synchronization. An embedded system is considered for time synchronization based on the GPS(Global Positioning System) referenced time distribution model. The system uses GPS as standard reference time source and offers UTC(Universal Time Coordinated) through NTP(Network Time Protocol). A clock model is designed and adapted to keep stable time and to provide accurate standard time with precise resolution. Private MIB(Management Information Base) is defined for network management. Implementation results and performance analysis are also presented.

Ranging Performance for Spoofer Localization using Receiver Clock Offset

  • Lee, Byung-Hyun;Seo, Seong-Hun;Jee, Gyu-In;Yeom, Dong-Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.137-144
    • /
    • 2016
  • In this paper, the performance of ranging measurement, which is generated using two receiver clock offsets in one receiver, was analyzed. A spoofer transmits a counterfeited spoofing signal which is similar to the GPS signal with hostile purposes, so the same tracking technique can be applied to the spoofing signal. The multi-correlator can generate two receiver clock offsets in one receiver. The difference between these two clock offsets consists of the path length from the spoofer to the receiver and the delay of spoofer system. Thus, in this paper, the ranging measurement was evaluated by the spoofer localization performance based on the time-of-arrival (TOA) technique. The results of simulation and real-world experiments show that the position and the system clock offset of the spoofer could be estimated successfully.