• Title/Summary/Keyword: GO nanoparticles

Search Result 57, Processing Time 0.024 seconds

Current Research Trends in Polyamide Based Nanocomposite Membranes for Desalination (해수담수화용 폴리아마이드 기반 나노복합막의 최신 연구동향)

  • Lee, Tae Hoon;Lee, Hee Dae;Park, Ho Bum
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.351-364
    • /
    • 2016
  • In recent decades, many researchers have tried to improve desalination performances of polyamide (PA) thin-film composite membranes (TFCs) by incorporating nanomaterials into a selective PA layer. This review focuses on PA-based nanocomposite membranes with high performances for energy-effective desalination in reverse osmosis. Carbon based nanomaterial (e.g., graphene oxide (GO), carbon nanotubes (CNT)) and/or other nanoparticles (e.g., zeolite, silica and etc.,) were applied to overcome the trade-off correlation between water permeability and salt rejection of current polymeric desalination membranes. Here, this brief review will discuss current studies of PA-based nanocomposite membranes with enhanced separation characteristics and provide the future research direction to achieve further improved desalination performances.

Evaluation of the cytotoxicity of gold nanoparticle-quercetin complex and its potential as a drug delivery vesicle

  • Pak, Pyo June;Go, Eun Byeol;Hwang, Min Hee;Lee, Dong Gun;Cho, Mi Ju;Joo, Yong Hoon;Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.145-147
    • /
    • 2016
  • Recently, conjugates of medicinal herb-derived bioflavonoids, such as quercetin, and gold nanoparticles (GNPs) have gained attention as targeted drug delivery systems. In the present study, because quercetin is an important flavonoid with anti-cancer, anti-inflammatory, and anti-oxidant properties, GNP-quercetin complexes (GNPQs) were synthesized to investigate possible adverse effects such as cytotoxicity. We found that while quercetin was cytotoxic, GNPQs were not cytotoxic towards the RAW 264.7 and THP-1 cell lines. Therefore, GNPQs may serve as a potential drug delivery system for cancer treatment.

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

An Enhanced Water Solubility and Antioxidant Effects of Seed and Pamace of Schisandra chinensis (Turcz.) Baill Formulation by HME (Hot-Melt Extrusion) (HME (Hot-Melt Extrusion)를 이용한 오미자 씨 및 박의 수용성 및 항산화 효과 향상)

  • Eun Ji Go;Min Ji Kang;Min Jun Kim;Jung Dae Lim;Young-Suk Kim;Jong-Min Lim;Min Jeong Cho;Tae Woo Oh;Seokho Kim;Kyeong Tae Kwak;Byeong Yeob Jeon
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.215-230
    • /
    • 2023
  • Objectives : Schisandra chinensis (Turcz.) Baill contains many nutrients and exhibits high physiological functions. It has been shown that Schisandra seed and pamace contains more nutrients than fruits and thus have higher antioxidant efficacy. In this study, seed and pamace of Schisandra chinensis (Turcz.) Baill (SPSC) were treated with hot-melt extrudate (HME) extrusion to produce water-soluble nanoparticles. Methods : SPSC was treated with HME to prepare nanoparticles. In this process, excipients (hydroxypropyl methylcellulose, pullulan, 2-hydroxylpropyl-beta-cyclodextrin, lecithin) were added to prepare a hydrophilic polymer matrix. To compare and analyze the antioxidant effect and schizandrin content, total flavonoid content, total phenol content and ABTS assay were measured. To confirm the effect of increasing the water solubility of the particles, particle size and water solubility index measurements were performed. The molecular of the material was analyzed using Fourier transform infrared spectroscopy (FT-IR). Results : The particle size of HME extrudates decreased, while total phenols, flavonoids, schizandrin, antioxidant effect, and solubility increased. Through FT-IR, it was confirmed that the SPSC and the extrudate exhibit the same chemical properties. In addition, it was confirmed that when extracted with water, it exhibited a higher antioxidant effect than the ethanol extract. Conclusions : HME technology increased the solubility of SPSC, which are processing by-products, and improved their antioxidant effect to a higher degree. It was confirmed that SPSC could be used as an eco-friendly, high value-added material.

Types and Yields of Carbon Nanotubes Synthesized Depending on Catalyst Pretreatment

  • Go, Jae-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.17.2-17.2
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) were grown with vertical alignment on a Si wafer by using catalytic thermal chemical vapor deposition. This study investigated the effect of pre-annealing time of catalyst on the types of CNTs grown on the substrate. The catalyst layer is usually evolved into discretely distributed nanoparticles during the annealing and initial growth of CNTs. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. Both the catalyst and support layers were coated by using thermal evaporation. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of H2 as a carrier gas and 20 sccm of C2H2 as a feedstock at 95 torr and $750^{\circ}C$. In this study, the catalyst and support layers were subject to annealing for 0~420 sec. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The annealing for 90~300 sec caused the growth of DWCNTs as high as ~670 ${\mu}m$ for 10 min while below 90 sec and over 420 sec 300~830 ${\mu}m$-thick triple and multiwalled CNTs occurred, respectively. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of 112~191 cm-1, implying the presence of DWCNTs, TWCNTs, MWCNTs with the tube diameters 3.4, 4.0, 6.5 nm, respectively. The maximum ratio of DWCNTs was observed to be ~85% at the annealing time of 180 sec. The Raman spectra of the as-grown DWCNTs showed low G/D peak intensity ratios, indicating their low defect concentrations. As increasing the annealing time, the catalyst layer seemed to be granulated, and then grown to particles with larger sizes but fewer numbers by Ostwald ripening.

  • PDF

Preparation of blocking ultraviolet mica composites using Nano-TiO2 (Nano-TiO2를 이용한 자외선차단 마이카 복합체 제조)

  • Yun, Ki Hoon;Lee, Jaebok;Moon, Young-Jin;Go, Hee Kyoung;Lee, Yi;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1197-1205
    • /
    • 2018
  • UV protection cosmetics belong to functional cosmetics and contain organic or inorganic UV blocking pigments. The inorganic UV blocking pigments are mainly zinc oxide and titanium dioxide. It is known that inorganic UV blocking pigment has a diameter of 60 to 100 nm and has good blocking ability of UVA and UVB. Also, it has high inactivity against sunlight including UV and is excellent in safety. In addition, it is not absorbed or accumulated on the skin like organic pigments and does not cause skin irritation or allergy. In this study, mica, a plate-shaped inorganic pigment, nanosized titanium dioxide, an UV blocking material, and hydrophobic silica were surface-treated with surfactants. And then, titanium dioxide nanoparticles and silica were physically adsorbed on the mica by non-chemical mutual attraction due to differences in charge. Thereafter, the mica complex was surface-treated with silane to prepare a hydrophobic UV blocking pigment complex. The plate-shaped UV blocking composite improves the cohesiveness of a general nanoparticle material titanium dioxide, enhances UV blocking effect due to uniform dispersion, and can greatly improve dispersion stability in cosmetic formulations by surface treatment with hydrophobic property. The surface charge of the pigment was evaluated by zeta potential. The properties of the UV blocking pigment complex were evaluated by FE-SEM, XRD, FT-IR and UV-VIS.

Fabrication and Filtering Test of Nanoparticle-Stabilized Emulsion to be Suitable for Enhanced Oil Recovery (석유증진회수에 적합한 나노 에멀젼의 제조 및 필터링 시험 분석)

  • Son, Han Am;Lee, Keun Ju;Cho, Jang Woo;Im, Kyung Chul;Kim, Jin Woong;Kim, Hyun Tae
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • Researches on the oil recovery enhancement using the nanotechnology has recently been studied in the United States. The previous researches has focused mainly on the flow characteristics of nanoparticles in porous media, and the stability of the nano-emulsion itself. However, the analysis did not deal with the size effects between a nano-emulsion and the pore size which has an important role when nano-emulsion flows in the porous media. In this research, nano-based emulsion was fabricated which is able to be applied for the enhanced oil recovery techniques and its characteristics was analyzed. In addition, in order to identify the characteristics of nano-emulsions flowing through the porous media, the size effect was analysed by filtering test. According to the results, when the emulsion was fabricated, SCA(Silane Coupling Agent) or PVA(Poly Vinyl Alcohol) are added to improve the stability of emulsion. As the ratio of the decane to water increased, the viscosity of emulsion and the droplet size also increased. For the filtering test at the atmospheric conditions, the droplet did not go through the filter; only the separated water from the emulsion was able to be filtered. This phenomenon occurred because the droplet was not able to overcome the capillary pressure. At the filtering test by suction pressure, most of the emulsion was filtered over the filter size of $60{\mu}m$. However, the ratio of filtration was rapidly degraded at less than $45{\mu}m$ filters. This is caused due to deformation and destruction of the droplet by strong shear stress when passing through the pore. The results from the study on the basic characteristic of nano-emulsion and filtering test will be expected to play as the important role for the fabrication of the stable nano-emulsion or the research on the recovery of residual oil in porous media.