DOI QR코드

DOI QR Code

Current Research Trends in Polyamide Based Nanocomposite Membranes for Desalination

해수담수화용 폴리아마이드 기반 나노복합막의 최신 연구동향

  • Lee, Tae Hoon (Department of Energy Engineering, Hanyang University) ;
  • Lee, Hee Dae (Department of Energy Engineering, Hanyang University) ;
  • Park, Ho Bum (Department of Energy Engineering, Hanyang University)
  • 이태훈 (한양대학교 에너지공학과) ;
  • 이희대 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2016.10.21
  • Accepted : 2016.10.27
  • Published : 2016.10.31

Abstract

In recent decades, many researchers have tried to improve desalination performances of polyamide (PA) thin-film composite membranes (TFCs) by incorporating nanomaterials into a selective PA layer. This review focuses on PA-based nanocomposite membranes with high performances for energy-effective desalination in reverse osmosis. Carbon based nanomaterial (e.g., graphene oxide (GO), carbon nanotubes (CNT)) and/or other nanoparticles (e.g., zeolite, silica and etc.,) were applied to overcome the trade-off correlation between water permeability and salt rejection of current polymeric desalination membranes. Here, this brief review will discuss current studies of PA-based nanocomposite membranes with enhanced separation characteristics and provide the future research direction to achieve further improved desalination performances.

최근 폴리아마이드 선택층에 나노물질을 혼합하여 해수담수화 성능을 높이고자 하는 연구가 활발히 이루어지고 있다. 본 총설은 역삼투 분리막 해수담수화 공정에서의 에너지 효율 향상을 위한 우수한 성능을 가진 폴리아마이드 기반 나노복합막을 소개하고자 한다. 그래핀 옥사이드 및 탄소나노튜브와 같은 탄소나노물질 및 제올라이트, 실리카 나노입자 등의 다양한 나노물질들이 기존 폴리아마이드의 투과분리성능을 높이기 위해 적용되고 있다. 본 총설에서는 최근 연구 중인 각 나노소재별 성능향상 특장점을 소개하고, 더 높은 성능을 갖는 나노복합막 제조를 위한 연구방향을 제시하고자 한다.

Keywords

References

  1. http://www.greenfacts.org/en/water-resources (2008).
  2. T. Evans and R. Beaglehole, "World Health Organization. The world health report 2003: shaping the future", World Health Organization, Switzerland (2003).
  3. M. Mulder, "Basic principles of membrane technology", 210, Springer Science & Business Media, Berlin (1996).
  4. G. M. Geise, H. S. Lee, D. J. Miller, B. D. Freeman, J. E. Mcgrath, and D. R. Paul, "Water purification by membranes: The role of polymer science", J. Polym. Sci. Pol. Phys., 48, 1685 (2010). https://doi.org/10.1002/polb.22037
  5. G. M. Geise, H. B. Park, A. C. Sagle, B. D. Freeman, and J. E. McGrath, "Water permeability and water/salt selectivity tradeoff in polymers for desalination", J. Membr. Sci., 369, 130 (2011). https://doi.org/10.1016/j.memsci.2010.11.054
  6. N. Misdan, W. J. Lau, and A. F. Ismail, "Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane-Current development, challenges and future prospects", Desalination, 287, 228 (2012). https://doi.org/10.1016/j.desal.2011.11.001
  7. A. K. Ghosh, B. H. Jeong, X. F. Huang, and E. M. V. Hoek, "Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties", J. Membr. Sci., 311, 34 (2008). https://doi.org/10.1016/j.memsci.2007.11.038
  8. S. Y. Kwak, S. G. Jung, and S. H. Kim, "Structure-motion-performance relationship of fluxenhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films", Environ. Sci. Technol, 35, 4334 (2001). https://doi.org/10.1021/es010630g
  9. B. H. Jeong, E. M. V. Hoek, Y. S. Yan, A. Subramani, X. F. Huang, G. Hurwitz, A. K. Ghosh, and A. Jawor, "Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes", J. Membr. Sci., 294, 1 (2007). https://doi.org/10.1016/j.memsci.2007.02.025
  10. W. J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J. P. Chen, and A. F. Ismail, "A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches", Water Res., 80, 306 (2015). https://doi.org/10.1016/j.watres.2015.04.037
  11. M. S. Lee and K. H. Youm, "Preparation of PES-$TiO_{2}$ hybrid membranes and evaluation of membrane properties", Membr. J., 17, 219 (2007).
  12. J. K. Koh, D. K. Roh, R. Patel, Y. G. Shul, and J. H. Kim, "Preparation and characterization of graft Copolymer/$TiO_{2}$ nanocomposite polymer electrolyte membranes", Membr. J., 20, 1 (2009).
  13. W. G. Jang, J. H. Yun, and H. Byun, "Preparation of PAN nanofiber composite membrane with $Fe_{3}O_{4}$ functionalized graphene oxide and its application as a water treatment membrane", Membr. J., 24, 151 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.151
  14. Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and graphene oxide: Synthesis, properties, and applications", Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  15. H. W. Kim, H. W. Yoon, S. M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J. Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91 (2013). https://doi.org/10.1126/science.1236098
  16. H. R. Chae, J. Lee, C. H. Lee, I. C. Kim, and P. K. Park, "Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance", J. Membr. Sci., 483, 128 (2015). https://doi.org/10.1016/j.memsci.2015.02.045
  17. M. E. A. Ali, L. Y. Wang, X. Y. Wang, and X. S. Feng, "Thin film composite membranes embedded with graphene oxide for water desalination", Desalination, 386, 67 (2016). https://doi.org/10.1016/j.desal.2016.02.034
  18. M. Ionita, E. Vasile, L. E. Crica, S. I. Voicu, A. M. Pandele, S. Dinescu, L. Predoiu, B. Galateanu, A. Hermenean, and M. Costache, "Synthesis, characterization and in vitro studies of polysulfone/graphene oxide composite membranes", Compos. Part B-Eng., 72, 108 (2015).
  19. H. D. Lee, H. W. Kim, Y. H. Cho, and H. B. Park, "Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes", Small, 10, 2653 (2014). https://doi.org/10.1002/smll.201303945
  20. H. J. Kim, M. Y. Lim, K. H. Jung, D. G. Kim, and J. C. Lee, "High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides", J. Mater. Chem. A, 3, 6798 (2015). https://doi.org/10.1039/C4TA06080F
  21. S. Inukai, R. Cruz-Silva, J. Ortiz-Medina, A. Morelos-Gomez, K. Takeuchi, T. Hayashi, A. Tanioka, T. Araki, S. Tejima, T. Noguchi, M. Terrones, and M. Endo, "High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube.polyamide nanocomposite", Scientific Rep., 5, (2015).
  22. N. C. Srivastava and I. W. Eames, "A review of adsorbents and adsorbates in solid-vapour adsorption heat pump systems", Appl. Therm. Eng., 18, 707 (1998). https://doi.org/10.1016/S1359-4311(97)00106-3
  23. J. H. Li, H. Z. Chang, L. Ma, J. M. Hao, and R. T. Yang, "Low-temperature selective catalytic reduction of NOx with $NH_{3}$ over metal oxide and zeolite catalysts-A review", Catal. Today, 175, 147 (2011). https://doi.org/10.1016/j.cattod.2011.03.034
  24. V. J. Inglezakis, "The concept of "capacity" in zeolite ion-exchange systems", J. Colloid Interface Sci., 281, 68 (2005). https://doi.org/10.1016/j.jcis.2004.08.082
  25. J. Lin and S. Murad, "A computer simulation study of the separation of aqueous solutions using thin zeolite membranes", Mol. Phys., 99, 1175 (2001). https://doi.org/10.1080/00268970110041236
  26. M. Kazemimoghadam, "New nanopore zeolite membranes for water treatment", Desalination, 251, 176 (2010). https://doi.org/10.1016/j.desal.2009.11.036
  27. L. X. Li, J. H. Dong, and T. M. Nenoff, "Transport of water and alkali metal ions through MFI zeolite membranes during reverse osmosis", Sep. Purif. Technol., 53, 42 (2007). https://doi.org/10.1016/j.seppur.2006.06.012
  28. M. M. Pendergast and E. M. V. Hoek, "A review of water treatment membrane nanotechnologies", Energy Environ. Sci., 4, 1946 (2011). https://doi.org/10.1039/c0ee00541j
  29. J. Kuhn, S. Sutanto, J. Gascon, J. Gross, and F. Kapteijn, "Performance and stability of multi-channel MFI zeolite membranes detemplated by calcination and ozonication in ethanol/water pervaporation", J. Membr. Sci., 339, 261 (2009). https://doi.org/10.1016/j.memsci.2009.05.006
  30. H. Dong, L. Zhao, L. Zhang, H. L. Chen, C. J. Gao, and W. S. W. Ho, "High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination", J. Membr. Sci., 476, 373 (2015). https://doi.org/10.1016/j.memsci.2014.11.054
  31. H. Huang, X. Y. Qu, H. Dong, L. Zhang, and H. L. Chen, "Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane", Rsc. Adv., 3, 8203 (2013). https://doi.org/10.1039/c3ra40960k
  32. X. Ma, N. H. Lee, H. J. Oh, J. S. Hwang, and S. J. Kim, "Preparation and characterization of silica/polyamide-imide nanocomposite thin films", Nanoscale. Res. Lett., 5, 1846 (2010). https://doi.org/10.1007/s11671-010-9726-7
  33. S. G. Kim, J. H. Chun, B. H. Chun, and S. H. Kim, "Preparation, characterization and performance of poly(aylene ether sulfone)/modified silica nanocomposite reverse osmosis membrane for seawater desalination", Desalination, 325, 76 (2013). https://doi.org/10.1016/j.desal.2013.06.017
  34. A. Ahmad, S. Waheed, S. M. Khan, S. e-Gul, M. Shafiq, M. Farooq, K. Sanaullah, and T. Jamil, "Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis", Desalination, 355, 1 (2015). https://doi.org/10.1016/j.desal.2014.10.004
  35. C. X. C. Lin, L. P. Ding, S. Smart, and J. C. D. da Costa, "Cobalt oxide silica membranes for desalination", J. Colloid. Interface Sci., 368, 70 (2012). https://doi.org/10.1016/j.jcis.2011.10.041
  36. A. Peyki, A. Rahimpour, and M. Jahanshahi, "Preparation and characterization of thin film composite reverse osmosis membranes incorporated with hydrophilic $SiO_{2}$ nanoparticles", Desalination, 368, 152 (2015). https://doi.org/10.1016/j.desal.2014.05.025
  37. J. Yin, E. S. Kim, J. Yang, and B. L. Deng, "Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification", J. Membr. Sci., 423, 238 (2012).
  38. H. Q. Wu, B. B. Tang, and P. Y. Wu, "Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles", J. Membr. Sci., 428, 341 (2013). https://doi.org/10.1016/j.memsci.2012.10.053
  39. L. J. Murray, M. Dinca, and J. R. Long, "Hydrogen storage in metal-organic frameworks", Chem. Soc. Rev., 38, 1294 (2009). https://doi.org/10.1039/b802256a
  40. Q. L. Song, S. K. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-Muhtaseb, and E. Sivaniah, "Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation", Energy Environ. Sci., 5, 8359 (2012). https://doi.org/10.1039/c2ee21996d
  41. M. J. C. Ordonez, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, "Molecular sieving realized with ZIF-8/Matrimid (R) mixed-matrix membranes", J. Membr. Sci., 361, 28 (2010). https://doi.org/10.1016/j.memsci.2010.06.017
  42. A. F. Bushell, M. P. Attfield, C. R. Mason, P. M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. C. Jansen, M. Lanc, K. Friess, V. Shantarovich, V. Gustov, and V. Isaeva, "Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8", J. Membr. Sci., 427, 48 (2013). https://doi.org/10.1016/j.memsci.2012.09.035
  43. J. T. Duan, Y. C. Pan, F. Pacheco, E. Litwiller, Z. P. Lai, and I. Pinnau, "High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8", J. Membr. Sci., 476, 303 (2015). https://doi.org/10.1016/j.memsci.2014.11.038
  44. S. H. Kim, S. Y. Kwak, B. H. Sohn, and T. H. Park, "Design of $TiO_{2}$ nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem", J. Membr. Sci., 211, 157 (2003). https://doi.org/10.1016/S0376-7388(02)00418-0
  45. M. Ben-Sasson, X. L. Lu, E. Bar-Zeev, K. R. Zodrow, S. Nejati, G. G. Qi, E. P. Giannelis, and M. Elimelech, "In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation", Water Res., 62, 260 (2014). https://doi.org/10.1016/j.watres.2014.05.049