• Title/Summary/Keyword: GLC analysis

Search Result 104, Processing Time 0.021 seconds

Gas Liquid Chromatographic Analysis of Fatty Acids in Ginseng Products (Gas Liquid Chromatography에 의한 인삼(人蔘) 제품(製品) 중의 지방산(脂肪酸) 분석(分析))

  • Yoon, Tai-Heon;Kim, Eul-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.182-187
    • /
    • 1979
  • Six commercial ginseng products, red ginseng, white ginseng I and II, red ginseng extract, white ginseng extract I and II were extracted with ethyl ether. Total fatty acid composition of the extracted free lipids was analyzed by gas liquid chromatography and digital integrator was used to measure the area of each peak. Crude lipid contents of red and white ginsengs were similiar. Those of red ginseng extract, white ginseng extract I and II were 1.10, 1.13 and 0.40%, respectively. It was found that 22 kinds of fatty acids existed in red and white ginsengs. Among them, 16 kinds of even numbered fatty acids were identified. Linoleic acid in red and white ginsengs was the most abundant. The contents of that in red ginseng, white ginseng I and II were 63.33, 45.55 and 41.06%, respectively. The next most abundant acid was palmitic acid, the contents of which were 11.30, 14.4 and 18.10% for red ginseng, white ginseng I and II, respectively. Major fatty acids for red ginseng extract and white ginseng extract I were linoleic and palmitic acids in the same order of magnitude. Linoleic and palmitic acids for red ginseng extract were 15.93 and 15.71 %, respectively, while linoleic and palmitic acids for white ginseng extract I were 21.94 and 19.15%, respectively. However, white ginseng extract II contained only 9.21% of linoleic acid and 16.13% of palmitic acid which was the major fatty acid.

  • PDF

Simultaneous Pesticide Analysis Method for Bifenox, Ethalfluralin, Metolachlor, Oxyfluorfen, Pretilachlor, Thenylchlor and Trifluralin Residues in Agricultural Commodities Using GC-ECD/MS (GC-ECD/MS를 이용한 농산물 중 Bifenox, Ethalfluralin, Metolachlor, Oxyfluorfen, Pretilachlor, Thenylchlor 및 Trifluralin의 동시 분석)

  • Ahn, Kyung Geun;Kim, Gi Ppeum;Hwang, Young Sun;Kang, In Kyu;Lee, Young Deuk;Choung, Myoung Gun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.104-116
    • /
    • 2018
  • BACKGROUND: This experiment was conducted to establish a simultaneous analysis method for 7 kinds of herbicides in 3 different classes having similar physicochemical property as diphenyl ether(bifenox and oxyfluorfen), dinitroaniline (ethalfluralin and trifluralin), and chloroacetamide (metolachlor, pretilachlor, and thenylchlor) in crops using GC-ECD/MS. METHODS AND RESULTS: All the 7 pesticide residues were extracted with acetone from representative samples of five raw products which comprised apple, green pepper, Kimchi cabbage, hulled rice and soybean. The extract was diluted with saline water and directly partitioned into n-hexane/dichloromethane(80/20, v/v) to remove polar co-extractives in the aqueous phase. For the hulled rice and soybean samples, n-hexane/acetonitrile partition was additionally employed to remove non-polar lipids. The extract was finally purified by optimized Florisil column chromatography. The analytes were separated and quantitated by GLC with ECD using a DB-1 capillary column. Accuracy and precision of the proposed method was validated by the recovery experiment on every crop samples fortified with bifenox, ethalfluralin, metolachlor, oxyfluorfen, pretilachlor, thenylchlor, and trifluralin at 3 concentration levels per crop in each triplication. CONCLUSION: Mean recoveries of the 7 pesticide residues ranged from 75.7 to 114.8% in five representative agricultural commodities. The coefficients of variation were all less than 10%, irrespective of sample types and fortification levels. Limit of quantitation (LOQ) of the analytes were 0.004 (etahlfluralin and trifluralin), 0.008 (metolachlor and pretilachlor), 0.006 (thenylchlor), 0.002 (oxyfluorfen), and 0.02 (bifenox) mg/kg as verified by the recovery experiment. A confirmatory technique using GC/MS with selected-ion monitoring was also provided to clearly identify the suspected residues. Therefore, this analytical method was reproducible and sensitive enough to determine the residues of bifenox, ethalfluralin, metolachlor, oxyfluorfen, pretilachlor, thenylchlor, and trifluralin in agricultural commodities.

Monitoring of Pesticide Residues in Leafy Vegetables Collected from Wholesale and Traditional Markets in Cheongju (청주지역 도매 및 재래시장 유통 엽채류 중 잔류농약 모니터링)

  • Noh, Hyun-Ho;Park, Young-Soon;Kang, Kyung-Won;Paik, Hyo-Kyung;Lee, Kwang-Hun;Lee, Jae-Yun;Yeop, Kyung-Won;Choi, Song-Rim;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.381-393
    • /
    • 2010
  • In order to monitor the residual characteristics of the pesticides in leafy vegetables selling at wholesale markets and traditional markets in Cheongju, a total of 180 samples of 15 leafy vegetables, such as broccoli, celery, chard, chicory, Chinese vegetable, Chwinamul, crown daisy, Korean cabbage, leek, lettuce, perilla leaves, Shinsuncho, spinach, welsh onion and young radish, were purchased from the wholesale markets and traditional markets in June and August in 2010 and the pesticide residues in them were analyzed by multiresidue analysis method using GLC, HPLC and GC-MSD. Seven pesticides were detected from 12 samples out of total 180 samples collected, representing detection rate was 6.7%. In case of the samples collected from markets in June, four pesticides including tefluthrin were detected from six samples and in case of the samples collected from markets in August, three pesticides including pendimethalin were detected from three samples. The MRL-exceeding rate of pesticides detected from leafy vegetables was 0.6%. The pesticide exceeded its MRL was azoxystrobin detected from crown daisy and many pesticides were not registered to the crops, excepting that azoxystrobin detected from Chwinamul and tefluthrin from leek. Estimated daily intakes (EDIs) of the pesticides detected from leafy vegetables were less than 7% of their acceptable daily intakes (ADIs), representing that residue levels of the pesticides detected were evaluated as safe.

Studies on Glycolipids in Bacteria -Part II. On the Structure of Glycolipid of Selenomonas ruminantium- (세균(細菌)의 당지질(糖脂質)에 관(關)한 연구(硏究) -제2보(第二報) Selenomonas ruminantium의 당지질(糖脂質)의 구조(構造)-)

  • Kim, Kyo-Chang
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.125-137
    • /
    • 1974
  • The chemical structure of glycolipid of Selenomonas ruminantium cell wall was to be elucidated. The bacterial cells were treated in hot TCA and the glycolipid fractions were extracted by the solvent $CHCl_3\;:\;CH_3OH$ (1 : 3). The extracted glycolipids fraction was further separated by acetone extraction. The acetone soluble fraction was named as the spot A-compound. The acetone insoluble but ether soluble fraction was named as the spot B-compound. These two compounds were examined for elucidation of their chemical structure. The results were as follows: 1. The IR spectral analysis showed that O-acyl and N-acyl fatty acids were linked to glucosamine moiety in the spot A-compound. However in the spot B-compound in addition to O and N-acyl acids phosphorus was shown to be attached to glucosamine. 2. It was recognized by gas liquid chromatography that spot A compound contained beta-OH $C_{13:0}$ fatty acid in predominance in addition to the fatty acid with beta-OH $C_{9:0}$, whereas the spot B compound was composed of the predominant fatty acid of beta-OH $C_{13:0}$ with small amount of beta-OH $C_{9:0}$. 3. According to the paper chromatographic analysis of hydrazinolysis products of the spot A compound, a compound of a similar Rf value as the chitobiose was recognized, which indicated a structure of two molecules glucosamine condensed. The low Rf value of the hydrazinolysis product of the spot B-compound confirmed the presence of phosphorus attached to glucosamine. 4. The appearance of arabinose resulting from. ninhydrin decomposition of the acid hydrolyzate of the spot A compound indicated that the amino group is attached to $C_2$ of glucosamine. 5. The amount of glucosamine in the N-acetylated spot A compound decreased in half of the original content by the treatment. with $NaBH_4$, indicating that there are two molecules of glucosamines in the spot A compound. The presence of 1, 6-linkage between two molecules of glucosamine was suggested by the Morgan-Elson reaction and confirmed by the periodate decomposition test. 6. By the action of ${\beta}-N-acetyl$ glucosaminidase the N-acetylated spot A compound was completely decomposed into N-acetyl glucosamine, whereas the spot B compound was not. This indicated the spot A compound has a beta-linkage. 7. When phosphodiesterase or phosphomonoesterase acted on $^{32}P-labeled$ spot B compound, $^{32}P$ was not released by phosphodiesterase, but completely released by phosphomonoesterase. This indicated that one phosphorus is linked to glucosamine moiety. 8. The spot A compound is assumed to have the following chemical structure: That is glucosaminyl, ${\beta}-1$, 6-glucosamine to which O-acyl and N-acyl fatty acids are linked, of which the predominant fatty acid is beta-OH $C_{13:0}$ fatty acid in addition to beta-OH $C_{9:0}$ fatty acid 9. The spot B compound is likely to have the linkage of $glucosaminyl-{\beta}-1$, 6-glucosamine to which phosphorus is linked in monoester linkage. Furthermore both O-acyl and N-acyl fatty acids contained beta-OH $C_{13:0}$ fatty acid predominantly in addition to beta-OH $C_{9:0}$ fatty acid.

  • PDF