DOI QR코드

DOI QR Code

Simultaneous Pesticide Analysis Method for Bifenox, Ethalfluralin, Metolachlor, Oxyfluorfen, Pretilachlor, Thenylchlor and Trifluralin Residues in Agricultural Commodities Using GC-ECD/MS

GC-ECD/MS를 이용한 농산물 중 Bifenox, Ethalfluralin, Metolachlor, Oxyfluorfen, Pretilachlor, Thenylchlor 및 Trifluralin의 동시 분석

  • Ahn, Kyung Geun (Department of Herbal Medicine Resource, College of Health Science, Kangwon National University) ;
  • Kim, Gi Ppeum (Department of Herbal Medicine Resource, College of Health Science, Kangwon National University) ;
  • Hwang, Young Sun (Department of Biology, University of Texas-Arlington) ;
  • Kang, In Kyu (Department of Horticultural Science, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Lee, Young Deuk (Division of Life and Environmental Science, College of Science Life Integration, Daegu University) ;
  • Choung, Myoung Gun (Department of Herbal Medicine Resource, College of Health Science, Kangwon National University)
  • 안경근 (강원대학교 보건과학대학 생약자원개발학과) ;
  • 김기쁨 (강원대학교 보건과학대학 생약자원개발학과) ;
  • 황영선 (텍사스주립대학교 생물학과) ;
  • 강인규 (경북대학교 농업생명과학대학 원예과학과) ;
  • 이영득 (대구대학교 과학생명융합대학 생명환경학부) ;
  • 정명근 (강원대학교 보건과학대학 생약자원개발학과)
  • Received : 2018.04.01
  • Accepted : 2018.05.25
  • Published : 2018.06.30

Abstract

BACKGROUND: This experiment was conducted to establish a simultaneous analysis method for 7 kinds of herbicides in 3 different classes having similar physicochemical property as diphenyl ether(bifenox and oxyfluorfen), dinitroaniline (ethalfluralin and trifluralin), and chloroacetamide (metolachlor, pretilachlor, and thenylchlor) in crops using GC-ECD/MS. METHODS AND RESULTS: All the 7 pesticide residues were extracted with acetone from representative samples of five raw products which comprised apple, green pepper, Kimchi cabbage, hulled rice and soybean. The extract was diluted with saline water and directly partitioned into n-hexane/dichloromethane(80/20, v/v) to remove polar co-extractives in the aqueous phase. For the hulled rice and soybean samples, n-hexane/acetonitrile partition was additionally employed to remove non-polar lipids. The extract was finally purified by optimized Florisil column chromatography. The analytes were separated and quantitated by GLC with ECD using a DB-1 capillary column. Accuracy and precision of the proposed method was validated by the recovery experiment on every crop samples fortified with bifenox, ethalfluralin, metolachlor, oxyfluorfen, pretilachlor, thenylchlor, and trifluralin at 3 concentration levels per crop in each triplication. CONCLUSION: Mean recoveries of the 7 pesticide residues ranged from 75.7 to 114.8% in five representative agricultural commodities. The coefficients of variation were all less than 10%, irrespective of sample types and fortification levels. Limit of quantitation (LOQ) of the analytes were 0.004 (etahlfluralin and trifluralin), 0.008 (metolachlor and pretilachlor), 0.006 (thenylchlor), 0.002 (oxyfluorfen), and 0.02 (bifenox) mg/kg as verified by the recovery experiment. A confirmatory technique using GC/MS with selected-ion monitoring was also provided to clearly identify the suspected residues. Therefore, this analytical method was reproducible and sensitive enough to determine the residues of bifenox, ethalfluralin, metolachlor, oxyfluorfen, pretilachlor, thenylchlor, and trifluralin in agricultural commodities.

본 연구는 GC-ECD/MS 분석법을 이용하여 농산물 시료 중 dinitroaniline계 제초제 ethalfluralin 및 trifluralin, chloroacetamide계 제초제 metolachlor, pretilachlor 및 thenylchlor와 diphenyl ether계 제초제 bifenox 및 oxfluorfen의 계역별 동시 분석법을 확립하였다. 농산물 시료에 acetone을 가하여 추출된 대상농약 7종의 잔류분은 n-hexane/dichloromethane(80/20, v/v)을 이용한 분배와 Florisil 흡착 크로마토그래피법으로 정제하여 분석대상 시료로 하였다. DB-1 capillary column을 이용한 GC-ECD 분석 시 불순물의 간섭은 없었으며, 사과, 고추, 배추, 현미 및 콩을 포함한 5종의 대표 농산물 중 대상농약 7종의 정량한계(LOQ)는 bifenox 0.02, ethalfluralin 0.004, metolachlor 0.008, oxyfluorfen 0.002, pretilachlor 0.008, thenylchlor 0.006 및 trifluralin 0.004 mg/kg이었다. 5종의 대표 농산물에 대한 대상농약 전체의 회수율은 75.7~114.8%였으며, 농산물 시료 및 처리수준에 관계없이 10% 미만의 분석오차를 나타내어 잔류분석기준 이내를 만족하였다. 본 연구에서 확립된 7종의 제초제 성분인 bifenox, ethalfluralin, metolachlor, oxyfluorfen, pretilachlor, thenylchlor 및 trifluralin의 계열별 동시 분석법은 검출한계, 회수율 및 분석오차 면에서 국제적 분석기준을 만족할 뿐만 아니라, GC/MS SIM을 이용한 잔류분의 재확인 과정의 결과를 종합해 볼 때 분석과정의 편리성 및 신뢰성이 확보된 계열별 동시 분석법으로 사용이 가능할 것으로 판단된다.

Keywords

References

  1. Ahn, K. G., Kim, G. H., Kim, G. P., Kim, M. J., Hwang, Y. S., Hong, S. B., Lee, Y. D., & Choung, M. G. (2014). Determination of amisulbrom residues in agricultural commodities using HPLC-UVD/MS. Korean Journal of Pesticide Science, 18(4), 321-329. https://doi.org/10.7585/kjps.2014.18.4.321
  2. Canadian Council of Ministers of the Environment (1999). Canadian water quality guidelines for the protection of aquatic life, metolachlor, pp. 1-3. Manitoba Statutory Publications, Canada.
  3. Dharumarajan, S., Sankar, R., Baskar, A., & Kumar, K. (2008). Persistence of pretilachlor in coastal rice ecosystem. Pesticide Research Journal, 20(2), 273-274.
  4. Fong, W. G., Moye, H. A., Seiber, J. N., & Toth, J. P. (1999). Pesticide residues in food: methods. Technologies, and Regulations, pp. 3-44, Wiley Interscience, Canada.
  5. Hutson, D. H. (1998). Metabolic pathways of agrochemicals, herbicides and plant growth regulators. pp. 216-217. Cambridge, UK.
  6. Judge, C. A., Neal, J. C., & Leidy, R. B. (2003). Trifluralin (Preen) dissipation from the surface layer of a soilless plant growth substrate. Journal of Environmental Horticulture, 21(4), 216-222.
  7. Jursik, M., Andr, J., Holec, J., & Soukup, J. (2011). Efficacy and selectivity of post-emergent application of flumioxazin and oxyfluorfen in sunflower. Plant Soil Environment, 57(11), 532-539. https://doi.org/10.17221/285/2011-PSE
  8. Kim, M. O., Hwang, H. S., Lim, M. S., Hong, J. E., Kim, S. S., Do, J. A., Choi, D. M., & Cho, D. H. (2010). Monitoring of residual pesticides in agricultural products by LC/MS/MS. Korean Journal of Food Science and Technology, 42(6), 664-675.
  9. Kwon, C. H., & Lee, Y. D. (2003). Terminal residues of monocrotophos and phosphamidon in apples. Life Science Research, 1(3), 277-286.
  10. Lee, J. H., Park, H. W., Keum, Y. S., Kwon, C. H., Lee, Y. D., & Kim, J. H. (2008). Dissipation pattern of boscalid in cucumber under greenhouse condition. Korean Journal of Pesticide Science, 12(1), 67-73.
  11. Barefoot, A., Murphy, J., & Aizawa, H. (2003). Handbook of residue analytical methods for agrochemicals (Vol. 2). Lee, P. W. (ed.). p. 585, Chichester, West Sussex, England; Hoboken, NJ: Wiley.
  12. Lee, S. J., Kim, Y. H., Song, L. S., & Choung, M. G. (2011). Determination of ametryn residue in agricultural commodities using HPLC-UVD/MS. Korean Journal of Pesticide Science, 15(2), 125-133.
  13. Lerch, R. N., Ferrer, I., Thurman, E. M., & Zablotowicz, R. M. (2003). Identification of trifluralin metabolites in soil using ion-trap LC/MS/MS, American Chemical Society, 291-310. DOI: 10.1021/bk-2003-0850.ch017
  14. Li, H. P., Li, G. C., & Jen, J. F. (2004). Fast multi-residue screening for 84 pesticides in tea by gas chromatography with dual-tower auto-sampler, dualcolumn and dual detectors. Journal of the Chinese Chemical Society, 51(3), 531-542. https://doi.org/10.1002/jccs.200400080
  15. Mastovska, K., Dorweiler, K. J., Lehotay, S. J., Wegscheid, J. S., & Szpylka, K. A. (2010). Pesticide multiresidue analysis in cereal grains using modified QuEChERS method combined with automated direct sample introduction GC-TOFMS and UPLC-MS/MS techniques. Journal of Agricultural and Food Chemistry, 58(10), 5959-5972. https://doi.org/10.1021/jf9029892
  16. Miller, J. M. (2005). Chromatography : Concepts and contrasts, standardization administration of the people's republic. pp. 286-287. (2nd), Wiley Intersciense, USA.
  17. Park, C. J., & Lee, Y. D. (2003). Persistence of the fungicide boscalid in grapes and strawberries, Life Science Research, 2(2), 9-16.
  18. Raina, R., & Hall, P. (2008). Comparison of gas chromatography -mass spectrometry and gas chromatography-tandem mass spectrometry with electron ionization and negative-ion chemical ionization for analyses of pesticides at trace levels in atmospheric samples. Analytical chemistry insights, 3, 111-125.
  19. Shackelford, D. D., McCormick, R. W., West, S. D., & Turner, L. G. (2000). Determination of ethalfluralin in canola seed, meal, and refined oil by capillary gas chromatography with mass selective detection. Journal of agricultural and food chemistry, 48(9), 4422-4427. https://doi.org/10.1021/jf000250z
  20. The Dow Chemical Company (2010). Product safety assessment for ethalfluralin. pp. 1-6. www.dow.com/productsafety/finder/.
  21. Yokley, R. A., Mayer, L. C., Huang, S. B., & Vargo, J. D. (2002). Analytical method for the determination of metolachlor, acetochlor, alachlor, dimethenamid, and their corresponding ethanesulfonic and oxanillic acid degradates in water using SPE and LC/ESI-MS/MS. Analytical chemistry, 74(15), 3754-3759. https://doi.org/10.1021/ac020134q
  22. Yun, H. C., Park, J. H., Cha, K. S., Youn, J. B., Jeong, J. H., Park, J. Y., Lee, J. Y., Kim, J. M., & Kang, J. M. (2009). Monitoring the residual pesticide levels of soil and water from the main agricultural area in Busan (II). The Annual Report of Busan Metropolitan City Institute of Heath & Environment, 19(1), 72-80.