• Title/Summary/Keyword: GF4 multiplier

Search Result 37, Processing Time 0.023 seconds

Design of High-Speed Parallel Multiplier over Finite Field $GF(2^m)$ (유한체 $GF(2^m)$상의 고속 병렬 승산기의 설계)

  • Seong Hyeon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.36-43
    • /
    • 2006
  • In this paper we present a new high-speed parallel multiplier for Performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the MOD operation part to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of MOD operation part have two AND gates and two XOR gates. Using these MOD operation parts, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the MOD operation parts with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI. Also, since this circuit has a low propagation delay time generated by the gates during operating process because of not use the memory elements in the inside of multiplier circuit, this multiplier circuit realizes a high-speed operation.

A Construction of the Multiplier and Inverse Element Generator over $GF(3^m)$ ($GF(3^m)$ 상의 승산기 및 역원생성기 구성)

  • 박춘명;김태한;김흥수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.747-755
    • /
    • 1990
  • In this paper, we presented a method of constructing a multiplier and an inverse element generator over finite field GF(3**m). We proposed the multiplication method using a descending order arithmetics of mod F(X) to perform the multiplication and mod F(X) arithmetics at the same time. The proposed multiplier is composed of following parts. 1) multiplication part, 2) data assortment generation part and 5) multiplication processing part. Also the inverse element generator is constructed with following parts. 1) multiplier, 2) group of output registers Rs, 3) multiplication and cube selection gate Gl, 4) Ri term sequential selection part. 5) cube processing part and 6) descending order mod F(X) generation part. Especially, the proposed multiplier and inverse element generator give regularity, expansibility and modularity of circuit design.

  • PDF

Realization of Multiple-Control Toffoli gate based on Mutiple-Valued Quantum Logic (다치양자논리에 의한 다중제어 Toffoli 게이트의 실현)

  • Park, Dong-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • Multiple-control Toffoli(MCT) gates are macro-level multiple-valued gates needing quantum technology dependent primitive gates, and have been used in Galois Field sum-of-product (GFSOP) based synthesis of quantum logic circuit. Reversible logic is very important in quantum computing for low-power circuit design. This paper presents a reversible GF4 multiplier at first, and GF4 multiplier based quaternary MCT gate realization is also proposed. In the comparisons of MCT gate realization, we show the proposed MCT gate can reduce considerably primitive gates and delays in contrast to the composite one of the smaller MCT gates in proportion to the multiple-control input increase.

A New Parallel Multiplier for Type II Optimal Normal Basis (타입 II 최적 정규기저를 갖는 유한체의 새로운 병렬곱셈 연산기)

  • Kim Chang-Han;Jang Sang-Woon;Lim Jong-In;Ji Sung-Yeon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.83-89
    • /
    • 2006
  • In H/W implementation for the finite field, the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in GF($2^m$). In this paper, we propose a new, simpler, parallel multiplier over GF($2^m$) having a type II optimal normal basis, which performs multiplication over GF($2^m$) in the extension field GF($2^{2m}$). The time and area complexity of the proposed multiplier is same as the best of known type II optimal normal basis parallel multiplier.

Design of a Parallel Multiplier for Irreducible Polynomials with All Non-zero Coefficients over GF($p^m$) (GF($p^m$)상에서 모든 항의 계수가 0이 아닌 기약다항식에 대한 병렬 승산기의 설계)

  • Park, Seung-Yong;Hwang, Jong-Hak;Kim, Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.4
    • /
    • pp.36-42
    • /
    • 2002
  • In this paper, we proposed a multiplicative algorithm for two polynomials with all non-zero coefficients over finite field GF($P^m$). Using the proposed multiplicative algorithm, we constructed the multiplier of modular architecture with parallel in-output. The proposed multiplier is composed of $(m+1)^2$ identical cells, each cell consists of one mod(p) additional gate and one mod(p) multiplicative gate. Proposed multiplier need one mod(p) multiplicative gate delay time and m mod(p) additional gate delay time not clock. Also, our architecture is regular and possesses the property of modularity, therefore well-suited for VLSI implementation.

Design of a systolic radix-4 finite-field multiplier for the elliptic curve cryptography (타원곡선 암호를 위한 시스톨릭 Radix-4 유한체 곱셈기 설계)

  • Park Tae-Geun;Kim Ju-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.40-47
    • /
    • 2006
  • The finite-field multiplication can be applied to the elliptic curve cryptosystems. However, an efficient algorithm and the hardware design are required since the finite-field multiplication takes much time to compute. In this paper, we propose a radix-4 systolic multiplier on $GF(2^m)$ with comparative area and performance. The algorithm of the proposed standard-basis multiplier is mathematically developed to map on low-cost systolic cells, so that the proposed systolic architecture is suitable for VLSI design. Compared to the bit-parallel, bit-serial and systolic multipliers, the proposed multiplier has relatively effective high performance and low cost. We design and synthesis $GF(2^{193})$ finite-field multiplier using Hynix $0.35{\mu}m$ standard cell library and the maximum clock frequency is 400MHz.

A Serial Multiplier for Type k Gaussian Normal Basis (타입 k 가우시안 정규기저를 갖는 유한체의 직렬곱셈 연산기)

  • Kim, Chang-Han;Chang, Nam-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.84-95
    • /
    • 2006
  • In H/W implementation for the finite field the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. In this paper, we propose a new, simpler, parallel multiplier over $GF(2^m)$ having a Gaussian normal basis of type k, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{mk})$ containing a type-I optimal normal basis. For k=2,4,6 the time and area complexity of the proposed multiplier is the same as tha of the best known Reyhani-Masoleh and Hasan multiplier.

A Multiplier for Type k Gaussian Normal Basis (타입 k 가우시안 정규기저를 갖는 유한체의 병렬곱셈 연산기)

  • Kim, Chang-Han;Kim, Sosun;Chang, Nam-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.45-58
    • /
    • 2006
  • In H/W implementation for the finite field, the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. In this paper, we propose a new, simpler, parallel multiplier over $GF(2^m)$ having a Gaussian normal basis of type k, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{mk})$ containing a type-I optimal normal basis. For k=2,4,6 the time and area complexity of the proposed multiplier is the same as tha of the best known Reyhani-Masoleh and Hasan multiplier

Design of a systolic radix-4 finite-field multiplier for the elliptic curve cryptosystem (타원곡선 암호를 위한 시스톨릭 Radix-4 유한체 곱셈기의 설계)

  • Kim, Ju-Young;Park, Tae-Geun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.695-698
    • /
    • 2005
  • The finite-field multiplication can be applied to the wide range of applications, such as signal processing on communication, cryptography, etc. However, an efficient algorithm and the hardware design are required since the finite-field multiplication takes much time to compute. In this paper, we propose a radix-4 systolic multiplier on $GF(2^m)$ with comparative area and performance. The algorithm of the proposed standard-basis multiplier is mathematically developed to map on low-cost systolic cell, so that the proposed systolic architecture is suitable for VLSI design. Compared to the bit-serial and digit-serial multipliers, the proposed multiplier shows relatively better performance with low cost. We design and synthesis $GF(2^{193})$ finite-field multiplier using Hynix $0.35{\mu}m$ standard cell library and the maximum clock frequency is 400MHz.

  • PDF

A Construction of Cellular Array Multiplier Over GF($2^m$) (GF($2^m$)상의 셀배열 승산기의 구성)

  • Seong, Hyeon-Kyeong;Kim, Heung-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.81-87
    • /
    • 1989
  • A cellular array multiplier for performing the multiplication of two elements in the finite field GF($2^m$) is presented in this paper. This multiplier is consisted of three operation part ; the multiplicative operation part, the modular operation part, and the primitive irreducible polynomial operation part. The multiplicative operation part and the modular operation part are composed by the basic cellular arrays designed AND gate and XOR gate. The primitive iirreducible operation part is constructed by XOR gates, D flip-flop circuits and a inverter. The multiplier presented here, is simple and regular for the wire routing and possesses the properties of concurrency and modularity. Also, it is expansible for the multiplication of two elements in the finite field increasing the degree m and suitable for VLSI implementation.

  • PDF