• Title/Summary/Keyword: GEOLOGIC RESEARCH

Search Result 267, Processing Time 0.023 seconds

Synthesizing and Assessing Fire-Resistant Geopolymer from Rejected Fly Ash

  • An, Eung-Mo;Cho, Young-Hoon;Chon, Chul-Min;Lee, Dong-Gyu;Lee, Sujeong
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.253-263
    • /
    • 2015
  • Ordinary Portland cement is a widely favored construction material because of its good strength and durability and its reasonable price; however, spalling behaviour during fire exposure can be a serious risk that can lead to strength degradation or collapse of a building. Geopolymers, which can be synthesized by mixing aluminosilicate source materials such as metakaolin and fly ash, and alkali activators, are resistant to fire. Because the chemical composition of geopolymers controls the properties of the geopolyers, geopolymers with various Si:Al ratios were synthesized and evaluated as fire resistant construction materials. Rejected fly ash generated from a power plant was quantitatively analyzed and mixed with alkali activators to produce geopolymers having Si:Al ratios of 1.5, 2.0, and 3.5. Compressive strength of the geopolymers was measured at 28 days before and after heating at $900^{\circ}C$. Geopolymers having an Si:Al ratio of 1.5 presented the best fire resistance, with a 44% increase of strength from 29 MPa to 41 MPa after heating. This material also showed the least expansion-shrinkage characteristics. Geopolymer mortar developed no spalling and presented more than a 2 h fire resistance rating at $1,050^{\circ}C$ during the fire testing, with a cold side temperature of $74^{\circ}C$. Geopolymers have high potential as a fire resistant construction material in terms of their increased strength after exposure to fire.

The State-of-the Art of the Borehole Disposal Concept for High Level Radioactive Waste (고준위방사성폐기물의 시추공 처분 개념 연구 현황)

  • Ji, Sung-Hoon;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • As an alternative of the high-level radioactive waste disposal in the subsurface repository, a deep borehole disposal is reviewed by several nuclear advanced countries. In this study, the state of the art on the borehole disposal researches was reviewed, and the possibility of borehole disposal in Korean peninsula was discussed. In the deep borehole disposal concept radioactive waste is disposed at the section of 3 - 5km depth in a deep borehole, and it has known that it has advantages in performance and cost due to the layered structure of deep groundwater and small surface disposal facility. The results show that it is necessary to acquisite data on deep geologic conditions of Korean peninsula, and to research the engineering barrier system, numerical modeling tools and disposal techniques for deep borehole disposal.

Stratigraphy of a Sediment Core Collected from the NE Equatorial Pacific Using Reversal Patterns of Geomagnetic Field and Be Isotope Ratio (지자기 방향변화 및 베릴륨 동위원소비를 이용한 북동 적도 태평양 주상시료의 층서확립)

  • Kim, Wonnyon;Hyeong, Kiseong;Kong, Gee Soo
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.395-405
    • /
    • 2014
  • A 570 cm-long sediment core was retrieved at $9^{\circ}57^{\prime}N$ and $131^{\circ}42^{\prime}W$ in 5,080 m water depth from the northeast equatorial Pacific and its stratigraphy was established with $^{10}Be/^9Be$ and paleomagnetic measurements. Successive AF demagnetization reveals eight geomagnetic field reversals. In the reference geologic time scale, the eight reversal events correspond to an age of about 4.5 Ma. However, $^{10}Be/^9Be$-based age yields 9.5 Ma at a depth of 372 cm. Such a large discrepancy in determined ages is attributed to an extremely low sedimentation rate, 0.4 mm/kyr on average, of the study core and resultant loss or smoothing of geomagnetic fields. The composite age model reveals a wide range in the sedimentation rate - varying from 0.1 to 2.4 mm/kyr. However, the sedimentation rate shows systematic variation depending on sedimentary facies (Unit II and III), which suggests that each lithologic unit has a unique provenance and transport mechanism. At depths of 110-80 cm with a sedimentation rate of about 0.1 mm/kyr, ancient geomagnetic field reversal events of at least a 1.8 Myr time span have not been recorded, which indicates the probable existence of a hiatus in the interval. Such a sedimentary hiatus is observed widely in the deep-sea sediments of the NE equatorial Pacific.

Petrological Study and Provenance Estimation on the Stone Materials from Outer Rampart of the Namhansanseong Fortress, Korea (남한산성 외성 성벽부재에 대한 암석학적 연구 및 산지추정)

  • Park, Sang Gu;Park, Sung Chul;Kim, Jae Hwan;Jwa, Young-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • The preservation treatment for the outer rampart of Namhansanseong fortress is needed due to partial collapse and separation of stone materials. In this study, we investigated the petrological features of the stone materials used for the outer rampart and estimated their provenances through the geologic survey. Through the above study, the suitable replacement stone in the maintenance of outer rampart were suggested. The stone materials of the above outer rampart consist of the banded gneiss, augen gneiss, granitic gneiss and porphyroblastic gneiss. Among these four kinds of rocks, granitic gneiss is quantitatively the most abundant. Petrological comparisons between stone materials and rocks distributed around the fortress, lead to the conclusion that the above materials are likely to have been delivered from around the fortress. Judging from the results of the comparison on frequency of use and strength characteristics among the above rocks, the granitic gneiss is considered to be suitable for restoration of the outer rampart of the fortress.

Analysis of Influence Factors of Forest Soil Sediment Disaster Using Aerial Photographs - Case Study of Pyeongchang-county in Gangwon-province - (항공사진을 이용한 산지토사재해 영향인자 분석 - 강원도 평창군을 중심으로 -)

  • Woo, Choong-Shik;Youn, Ho-Joong;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.1
    • /
    • pp.14-22
    • /
    • 2008
  • The forest soil sediment disasters occurred in Jinbu-myeon Pyeongchang county were investigated characteristics by the aerial photograph analysis. After digitizing from aerial photographs, forest soil sediment disaster sites were classified into 695 collapsed sites, 305 flowed sites and 199 sediment sites. DEM (Digital Elevation Model) were generated from 1 : 5,000 digital topographic map. Factors of geography, hydrology, biology, and geology were analyzed using DEM, geologic map, and forest stand map with aerial photographs by GIS spatial analysis technique. The forest soil sediment disasters were mainly occurred from southeastern slope to southwestern slope. In collapsed sit es, the average slope degree is $28.9^{\circ}$, the average flow length is 163.5m, the average area of drainage basin is 897$m^2$. In case of flowed sites, the average slope degree, flow length, the area of drainage basin and confluence order is $27.0^{\circ}$, 175m, 2,500$m^2$ and 1, respectively. In sediment sites, the average slope, flow length, the area of drainage basin and confluence order is $12.5^{\circ}$, 2,50m, 25,000$m^2$ and 4, respectively. Also the forest soil sediment disasters were occurred most of collapsed sites in the afforest land after felling and igneous rocks composed of granite.

Hydrogeological Controls on the Discharge Rate of Choosan Spring in the Nari Basin of Ulleung Island, South Korea (울릉도 나리분지 추산용천수 수량의 수리지질학적 지배요소)

  • Byeongdae Lee;Min Han;Chung-Ryul Ryoo;Byong-Wook Cho
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.13-24
    • /
    • 2024
  • The purpose of this study is to identify the geology, geologic structure, hydrogeology and geomorphic characteristics of the Nari Basin and establish the controls on the discharge of water 20,000~40,000 m3/day from the Choosan Yongchulso, Ulleung Island, South Korea. Pumice and lapilli tuffs showing well-developed stratification are the predominant rock types surrounding the spring. The spring shows a structure whereby discharge occurs along a lens-like erosion cave formed by differential erosion of strata comprising tuff or pumice tuff. The Choosan Yongchulso is located at the point where the planation surface of the Nari Basin' ends and steep slopes begin. The basin is bounded on all sides by these steep slopes, except in the north, where the Choosan Yongchulso is located. Given these geomorphic characteristics, the Choosan Yongchulso is regarded as the ultimate outlet of the basin catchment area.

Distribution and Behavior of Soil CO2 in Pohang area: Baseline Survey and Preliminary Interpretation in a Candidate Geological CO2 Storage Site (포항 지역 토양 CO2의 분포 및 거동 특성 연구: CO2 지중저장 부지 자연 배경 조사 및 예비 해석)

  • Park, Jinyoung;Sung, Ki-Sung;Yu, Soonyoung;Chae, Gitak;Lee, Sein;Yum, Byoung-Woo;Park, Kwon Gyu;Kim, Jeong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.49-60
    • /
    • 2016
  • Distribution and behavior of baseline soil CO2 were investigated in a candidate geologic CO2 storage site in Pohang, with measuring CO2 concentrations and carbon isotopes in the vadose zone as well as CO2 fluxes and concentrations through ground surface. This investigation aimed to assess the baseline CO2 levels and to build the CO2 monitoring system before injecting CO2. The gas in the vadose zone was collected using a peristaltic pump from the depth of 60 cm below ground surface, and stored at gas bags. Then the gas components (CO2, O2, N2, CH4) and δ13CCO2 were analyzed using GC and CRDS (cavity ringdown spectroscopy) respectively in laboratory. CO2 fluxes and CO2 concentrations through ground surface were measured using Li-COR in field. In result, the median of the CO2 concentrations in the vadose zone was about 3,000 ppm, and the δ13CCO2 were in the wide range between −36.9‰ and −10.6‰. The results imply that the fate of CO2 in the vadose zone was affected by soil property and vegetations. CO2 in sandy or loamy soils originated from the respiration of microorganisms and the decomposition of C3 plants. In gravel areas, the CO2 concentrations decreased while the δ13CCO2 increased because of the mixing with the atmospheric gas. In addition, the relation between O2 and CO2, N2, and the relation between N2/O2 and CO2 implied that the gases in the vadose zone dissolved in the infiltrating precipitation or the soil moisture. The median CO2 flux through ground surface was 2.9 g/m2/d which is lower than the reported soil CO2 fluxes in areas with temperate climates. CO2 fluxes measured in sandy and loamy soil areas were higher (median 5.2 g/m2/d) than those in gravel areas (2.6 g/m2/d). The relationships between CO2 fluxes and concentrations suggested that the transport of CO2 from the vadose zone to ground surface was dominated by diffusion in the study area. In gravel areas, the mixing with atmospheric gases was significant. Based on this study result, a soil monitoring procedure has been established for a candidate geologic CO2 storage site. Also, this study result provides ideas for innovating soil monitoring technologies.

A-KRS GoldSim Model Verification: A Comparison Study of Performance Assessment Model (KAERI A-KRS 골드심 성능평가 모델 비교 검증 연구)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.103-114
    • /
    • 2013
  • The Korea Atomic Energy Research Institute has developed a performance assessment model implementing the A-KRS concept, which was constructed with the GoldSim. In the A-KRS concept, spent nuclear fuel produced from pressurized-water-reactor operations would be pyroprocessed to reduce waste volume and radioactivity. The wastes to be disposed of in a geologic repository are comprised of metal and ceramic waste forms. In this study, results of simulations conducted to establish credibility and build confidence for the A-KRS model are presented. Specifically, release rates and breakthrough times simulated using the A-KRS model were compared to corresponding results from the U.S. NRC SOAR model. In addition, the A-KRS model results were compared to published release rates from the SKB repository performance assessment. This comparison of the A-KRS model results to other independent performance assessments is expected to form part of a suite of model verification and validation activities to provide confidence that the A-KRS model has been implemented appropriately.

Developing and Assessing Geopolymers from Seochun Pond Ash with a Range of Compositional Ratios (서천화력발전소 매립 석탄재로부터 제조한 다양한 조성비의 지오폴리머와 그 특성의 평가)

  • Lee, Sujeong;Jou, Hyeong-Tae;Chon, Chul-Min;Kang, Nam-Hee;Cho, Sung-Baek
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.134-141
    • /
    • 2013
  • Pond ash produced from Seochun Power Station was quantitatively characterized to manufacture geopolymers with a range of Si/Al compositional ratios. Mix consistency was kept nearly constant for comparing the compressive strengths of geopolymers. The amorphous composition of coal ash was determined using XRF and quantitative X-ray diffraction. Different mix compositions were used in order to achieve Si/Al ratios of 2.0, 2.5 and 3.0 in the geopolymer binder. Geopolymers synthesized from coal ash with a Si/Al ratio of 3.0 exhibited the highest compressive strength in this study. It was found that geopolymers activated with aluminate produced different microstructure from that of geopolymers activated with silicate. High silica in alkali activators produced the fine-grained microstructure of geopolymer gel. It was also found that high compressive strength was related to low porosity and a dense, connected microstructure. The outcome of the reported experiment indicates that quantitative formulation method made it possible to choose suitable activators for achieving targeted compositions of geopolymers and to avoid efflorescence.

Flow Lab. : Flow Visualization and Simulation (핵종이동 가시적 현상관찰및 수치모사)

  • Park Chung-Kyun;Cho Won-Jin;Hahn Pi1-Soo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.134-142
    • /
    • 2005
  • The experimental setups for flow visualization and processes identification in laboratory scale (so cal led Flow Lab.) has developed to get ideas and answer fundamental questions of flow and migration in geologic media. The setup was made of a granite block of $50{\times}50cm$ scale and a transparent acrylate plate. The tracers used in this experiments were tritiated water, anions, and sorbing cations as well as an organic dye, eosine, to visualize migration paths. The migration plumes were taken with a digital camera as a function of time and stored as digital images. A migration model was also developed to describe and identify the transport processes. Computer simulation was carried out not only for the hydraulic behavior such as distributions of pressure and flow vectors in the fracture but also for the migration plume and the elution curves.

  • PDF