DOI QR코드

DOI QR Code

The State-of-the Art of the Borehole Disposal Concept for High Level Radioactive Waste

고준위방사성폐기물의 시추공 처분 개념 연구 현황

  • Received : 2012.01.31
  • Accepted : 2012.03.09
  • Published : 2012.03.30

Abstract

As an alternative of the high-level radioactive waste disposal in the subsurface repository, a deep borehole disposal is reviewed by several nuclear advanced countries. In this study, the state of the art on the borehole disposal researches was reviewed, and the possibility of borehole disposal in Korean peninsula was discussed. In the deep borehole disposal concept radioactive waste is disposed at the section of 3 - 5km depth in a deep borehole, and it has known that it has advantages in performance and cost due to the layered structure of deep groundwater and small surface disposal facility. The results show that it is necessary to acquisite data on deep geologic conditions of Korean peninsula, and to research the engineering barrier system, numerical modeling tools and disposal techniques for deep borehole disposal.

고준위폐기물 처분과 관련하여, 최근 저장소 형태의 처분장 개념에 대한 대안으로 검토되고 있는 시추공 처분 개념에 대한 연구 현황을 정리하고 시추공 처분 개념의 국내 적용 가능성과 필요한 연구 항목에 대해 논의하였다. 현재 미국과 스웨덴을 중심으로 논의된 시추공 처분 개념은 심부시추공을 설치하여 지하 3 - 5km 구간에 고준위폐기물을 처분하는 것을 의미하며, 현재까지의 연구 결과에 의하면 이 처분 개념은 심부지하수의 층상구조, 작은 규모의 지표시설 등으로 인해 처분 및 비용 효율이 클 것으로 예상된다. 이에 반해 국내에는 축적된 심부 지질 자료가 없어 적용 가능성에 대한 논의할 여지가 없다. 이에 저장소 형태의 처분장 개념에 대한 대안으로 시추공 처분 개념을 검토하기 위해서는 향후 심지층 자료 확보, 공학적 방벽 연구, 수치모의모델 개발, 처분 기술 개발 등의 연구가 필요하다.

Keywords

References

  1. NIREX, A Review of the Deep Borehole Disposal Concept for Radioactive Waste, Nirex report no. N/108, Oxfordshire, UK (2004).
  2. IAEA, Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities, IAEA-TECDOC-1368, International Atomic Energy Agency (IAEA), Vienna, Austria (2003).
  3. IAEA, IAEA Safety report series: Generic postclosure safety assessment for borehole disposal of disused sealed sources (Draft 0.6 results), International Atomic Energy Agency (IAEA), Vienna, Austria (2007).
  4. K.-I. Ahall, Final disposal of high-Level nuclear waste in very deep boreholes: An evaluation based on recent research of bedrock conditions at great depths, MKG Report 2, Swedish NGO Office of Nuclear Waste Review (MKG), Goteborg, Sweden (2006).
  5. P. V. Brady, B. W. Arnold, G. A. Freeze, P. N. Swift, S. J. Bauer, J. L. Kanney, R. P. Rechard and J. S. Stein, Deep borehole disposal of high-level radioactive waste, Sandia report SAND 2009-4401, Albuquerque, NM (2009).
  6. N. Chapman and F.G.F. Gibb, "A truly final waste management solutions: Is very deep borehole disposal a realistic option for high-level waste or fissile materials?", Radwaste Solutions, 10, pp. 26-37 (2003).
  7. C. Juhlin and H. Sandstedt, Storage of nuclear waste in very deep boreholes: Feasibility study and assessment of economic potential. Part I: Geological consideration. Part II: Overall facility plan and cost analysis, TR 89-39, SKB, Stockholm, Sweden (1989).
  8. V. K. Anderson, An evaluation of the feasibility of disposal of nuclear waste in very deep boreholes, Dept. of Nuclear Engineering, Cambridge, MA (2004).
  9. I. G. Mckinley and A. Scholtis, "A comparison of radionuclide sorption databases used in recent performance assessments", J. Contam. Hydrol. 13, pp. 347-363 (1993). https://doi.org/10.1016/0169-7722(93)90070-9
  10. DOE, Anaysis of the total system life circle cost of the civilian radioactive waste management program, Fiscal year 2007, DOE/RW-0591, Washington D.C. (2008).
  11. C. Juhlin, T. Wallroth, J. Smellie, T. Eliasson, C. Ljunggren, B. Leijon and J. Beswick, The very deep borehole concept: Geoscientific appraisal of conditions at great depth, TR 98-05, SKB, Stockholm, Sweden (1998).
  12. J. Smellie, Recent geoscientific information relating to deep crustal studies, R-04-09, SKB, Stockholm, Sweden (2004).
  13. MIT, The future of nuclear power: An interdisciplinary MIT study, Massachusetts Institute of Technology (MIT), Boston, MA (2003).
  14. W. Sand, "Microbial life in geothermal waters", Geothermics, 32, pp. 645-667 (2003). https://doi.org/10.1016/S0375-6505(03)00069-5
  15. T. Harrison, Very deep borehole. Deutags opinion on boring, canister emplacement and retrievability, R-00-35, SKB, Stockholm, Sweden (2000).
  16. KIGAM(Korea Institute of Geoscience and Mineral Resources), Development of deep, low-enthalpy geothermal energy, OAA2003001-2006, KIGAM, Daejeon (2006).
  17. S.H. Lee and Y.S. Hwang, "Technical standards on the safety assessment of a HLW repository in other countries", Journal of the Korean Radioactive Waste Society, 7, pp. 183-190 (2009).

Cited by

  1. The state-of-the art of the geological investigation processes and techniques for deep borehole disposal of high-level radioactive waste vol.52, pp.1, 2016, https://doi.org/10.14770/jgsk.2016.52.1.95
  2. The Status and Outlook of High-Level Radioactive Waste Disposal in Deep Borehole Focusing on Behavior of Large-Diameter Deep Borehole vol.54, pp.4, 2017, https://doi.org/10.12972/ksmer.2017.54.4.377
  3. Preliminary Evaluation of Domestic Applicability of Deep Borehole Disposal System vol.16, pp.4, 2018, https://doi.org/10.7733/jnfcwt.2018.16.4.491
  4. Analysis of permeability in rock fracture with effective stress at deep depth vol.22, pp.5, 2012, https://doi.org/10.12989/gae.2020.22.5.375