DOI QR코드

DOI QR Code

Developing and Assessing Geopolymers from Seochun Pond Ash with a Range of Compositional Ratios

서천화력발전소 매립 석탄재로부터 제조한 다양한 조성비의 지오폴리머와 그 특성의 평가

  • Lee, Sujeong (Mineral Resources Research Division, Korea Institue of Geoscience and Mineral Resources) ;
  • Jou, Hyeong-Tae (Maritime Security Center, Korea Institute of Ocean Science & Technology) ;
  • Chon, Chul-Min (Geologic Environment Division, Korea Institue of Geoscience and Mineral Resources) ;
  • Kang, Nam-Hee (Mineral Resources Research Division, Korea Institue of Geoscience and Mineral Resources) ;
  • Cho, Sung-Baek (Mineral Resources Research Division, Korea Institue of Geoscience and Mineral Resources)
  • 이수정 (한국지질자원연구원 광물자원연구본부) ;
  • 주형태 (한국해양과학기술원 해양방위센터) ;
  • 전철민 (한국지질자원연구원 지구환경연구본부) ;
  • 강남희 (한국지질자원연구원 광물자원연구본부) ;
  • 조성백 (한국지질자원연구원 광물자원연구본부)
  • Received : 2013.01.29
  • Accepted : 2013.03.13
  • Published : 2013.03.31

Abstract

Pond ash produced from Seochun Power Station was quantitatively characterized to manufacture geopolymers with a range of Si/Al compositional ratios. Mix consistency was kept nearly constant for comparing the compressive strengths of geopolymers. The amorphous composition of coal ash was determined using XRF and quantitative X-ray diffraction. Different mix compositions were used in order to achieve Si/Al ratios of 2.0, 2.5 and 3.0 in the geopolymer binder. Geopolymers synthesized from coal ash with a Si/Al ratio of 3.0 exhibited the highest compressive strength in this study. It was found that geopolymers activated with aluminate produced different microstructure from that of geopolymers activated with silicate. High silica in alkali activators produced the fine-grained microstructure of geopolymer gel. It was also found that high compressive strength was related to low porosity and a dense, connected microstructure. The outcome of the reported experiment indicates that quantitative formulation method made it possible to choose suitable activators for achieving targeted compositions of geopolymers and to avoid efflorescence.

Keywords

References

  1. C. Shi, A. Ferandez Jimenez, and A. Palomo, "New Cements for the 21st Century: The Pursuit of an Alternative to Portland Cement," Cement Concrete Res., 41 750-63 (2011). https://doi.org/10.1016/j.cemconres.2011.03.016
  2. S. Lee, M.D. Seo, Y. J. Kim, H. H. Park, T. N. Kim, Y. Hwang, and S. B. Cho, "Unburned Carbon Removal Effect on Compressive Strength Development in a Honeycomb Briquette Ash-Based Geopolymer," Int. J. Miner. Proc., 97 20-25 (2010). https://doi.org/10.1016/j.minpro.2010.07.007
  3. J. T. Kim, D. S. Seo, G. J. Kim, and J. K. Lee, "Influence of Alkaline-Activator Content on the Compressive Strength of Aluminosilicate-Based Geopolymer(in Korean)," J. Kor. Ceram. Soc., 47 [3] 216-22 (2010). https://doi.org/10.4191/KCERS.2010.47.3.216
  4. J. T. Kim, D. S. Seo, G. J. Kim, and J. K. Lee, "Influence of Water Glass Content on the Compressive Strength of Aluminosilicate- Based Geopolymer(in Korean)," Kor. J. Mater. Res., 20 [9] 488-93 (2010). https://doi.org/10.3740/MRSK.2010.20.9.488
  5. Y. Hwang, "Effect of Additives on the Compressive Strength of Geopolymerized Fly Ash(in Korean)," Kor. J. Mater. Res., 22 [9] 494-98 (2012). https://doi.org/10.3740/MRSK.2012.22.9.494
  6. G. S. Ryu, K. T. Koh, and Y. S. Chung, "Analysis of Mechanical Properties and Micro Structure of Fly Ash Based Alkali-Activated Mortar(in Korean)," J. of Kor. Inst. Resouress Recycling, 21 [3] 27-38 (2012). https://doi.org/10.7844/kirr.2012.21.3.028
  7. E. M. An, S. B. Cho, S. Lee, H. Miyauchi, and G. Y. Kim, "Compressive Strength Properties of Geopolymer Using Power Plant Bottom Ash and NaOH Activator(in Korean)," Kor. J. Mater. Res., 22 [2] 71-7 (2012). https://doi.org/10.3740/MRSK.2012.22.2.71
  8. C. R. Ward and D. French, "Determination of Glass Content and Estimation of Glass Composition in Fly Ash Using Quantitative X-ray Diffractometry," Fuel, 85 2268-77 (2006). https://doi.org/10.1016/j.fuel.2005.12.026
  9. A. Fernandez-Jimenez, A. Palomo, I. Sobrados, and J. Sanz, "The Role Played by the Reactive Alumina Content in the Alkaline Activation of Fly Ashes," Micropor. Mesopor. Mater., 91 111-19 (2006). https://doi.org/10.1016/j.micromeso.2005.11.015
  10. M. R. Rowles and B. H. O'Connor, "Chemical and Structural Microanalysis of Aluminosilicate Geopolymers Synthesized by Sodium Silicate Activation of Metakaolinite," J. Am. Ceram. Soc., 92 [10] 2354-61 (2009). https://doi.org/10.1111/j.1551-2916.2009.03191.x
  11. N. W. Chen-Tan, A. van Riessen, C. V. LY, and D. C. Southam, "Determining the Reactivity of a Fly Ash for Production of Geopolymer," J. Am. Ceram. Soc., 92 [4] 881-87 (2009). https://doi.org/10.1111/j.1551-2916.2009.02948.x
  12. O. Font, N. Moreno, X. Querol, M. Izquierdo, E. Alvarez, S. Diez, J. Elvira, D. Antenucci, H. Nugteren, F. Plana, A. Lopez, P. Coca, and F. G. Pena, "X-ray Powder Diffraction- Based Method for the Determination of the Glass Content and Mineralogy of Coal (Co)-Combustion Fly Ashes," Fuel, 89 2971-6 (2010). https://doi.org/10.1016/j.fuel.2009.11.024
  13. R. P. Williams and A. van Riessen, "Determination of the Reactive Component of Fly Ashes for Geopolymer Production Using XRF and XRD," Fuel, 89 3683-92 (2010). https://doi.org/10.1016/j.fuel.2010.07.031
  14. R. T. Chancey, P. Stutzman, M. C. G. Juenger, and D. W. Fowler, "Comprehensive Phase Characterization of Crystalline and Amorphous Phases of a Class F Fly Ash," Cement Concrete Res., 40 [1] 146-56 (2010). https://doi.org/10.1016/j.cemconres.2009.08.029
  15. R. P. Williams, R. D. Hart, and A. van Riessen, "Quantification of the Extent of Reaction of Metakaolin-Based Geopolymers Using X-Ray Diffraction, Scanning Electron Microscopy, and Energy-Dispersive Spectroscopy," J. Am. Ceram. Soc., 94 [8] 2663-70 (2011). https://doi.org/10.1111/j.1551-2916.2011.04410.x
  16. Kani, E. Najafi, A. Allahverdi, and J. L. Provis, "Efflorescence Control in Geopolymer Binders Based on Natural Pozzolan," Cement Concrete Res., 34 [1] 25-33 (2012). https://doi.org/10.1016/j.cemconcomp.2011.07.007
  17. M. C. Fuerstenau and K. N. Han, "Principles of Mineral Processing," pp. 573, Society for Mining, Metallurgy, and Exploration Inc., USA, 2003.
  18. C. M. Chon, S. Lee, and S. W. Lee, "Quantitative X-ray Diffraction Analysis of Synthetic Mineral Mixtures Including Amorphous Silica Using the PONKCS Method(in Korean)," J. Min. Soc. Kor., In press (2013).
  19. S. Lee, Y. J. Kim, and H. S. Moon, "Phase Transformation Sequence from Kaolinite to Mullite Investigated by an Energy-Filtering Transmission Electron Microscope," J. Am. Ceram. Soc., 82 [10] 2841-48 (1999).
  20. J. L. Provis and J. S. J. van Deventer, "Geopolymers-Structrure, Processing Properties and Industrial Applications," pp. 72-88, Woodhead Publishing Limited and CRC Press LLC, UK, 2009.
  21. P. Duxson, J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. J. van Deventer, "Understanding the Relationship Between Geopolymer Composition, Microstructure and Mechanical Properties," Colloids Surf., A: Physicochem. Eng. Asp., 269 47-58 (2005). https://doi.org/10.1016/j.colsurfa.2005.06.060
  22. M. Rowles and B. O'Connor, "Chemical Optimisation of the Compressive Strength of Aluminosilicate Geopolymers Synthesised by Sodium Silicate Activation of Metakaolinite," J. Mater. Chem., 13 1161-65 (2003). https://doi.org/10.1039/b212629j
  23. M. Steveson and K. Sagoe-Crentsil, "Relationships Between Composition, Structure and Strength of Inorganic Polymers Part1 Metakaolin-Derived Inorganic Polymers," J. Mater. Sci., 40 2023-36 (2005). https://doi.org/10.1007/s10853-005-1226-2
  24. M. Steveson and K. Sagoe-Crentsil, "Relationships Between Composition, Structure and Strength of Inorganic Polymers Part2 Fly Ash-Derived Inorganic Polymers," J. Mater. Sci., 40 4247-59 (2005). https://doi.org/10.1007/s10853-005-2794-x
  25. K. Komnitsas and D. Zaharaki, "Geopolymerisation: A Review and Prospects for the Minerals Industry," Miner. Eng., 20 1261- 77 (2007). https://doi.org/10.1016/j.mineng.2007.07.011
  26. R. A. Fletcher, K. J. D. MacKenzie, C. L. Nicholson, and S. Shimada, "The Composition Range of Aluminosilicate Geopolymers," J. Eur. Ceram. Soc., 25 1471-77 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.06.001
  27. P. Duxson J. L., Provis G. C. Lukey, A. Palomo, and J. S. J. van Deventer, "Geopolymer Technology: the Current State of the Art," J. Mater. Sci., 42 2917-33 (2007). https://doi.org/10.1007/s10853-006-0637-z
  28. L. Weng, K. Sagoe-Crentsil, T. Brown, and S. Song, "Effects of Aluminates on the Formation of Geopolymers," Mater. Sci. Eng. B: Solid State., 117 [2] 163-68 (2005). https://doi.org/10.1016/j.mseb.2004.11.008
  29. W. K. W. Lee and J. S. J. van Deventer, "Structural Reorganisation of Class F Fly Ash in Alkaline Silicate Solutions," Colloids Surf., A: Physicochem. Eng. Asp., 211 49-66 (2002). https://doi.org/10.1016/S0927-7757(02)00237-6
  30. J. G. S. van Jaarsveld and J. S. J. van Deventer,, "Effect of the Alkali Metal Activator on the Properties of Fly Ash- Based Geopolymers," Ind. Eng. Chem. Res., 38 [10] 3932- 41 (1999). https://doi.org/10.1021/ie980804b
  31. D. Hardjito, S. E. Wallah, D. M. J. Sumajouw, and B.V. Rangan, "Factors Influencing the Compressive Strength of Fly Ash-Based Geopolymer Concrete," J. Civil Eng. Sci. Appl., 6 [2] 88-93 (2004).
  32. M. F. Nuruddin, S. Demie, and N. Shafiq, "Effect of Mix Composition on Workability and Compressive Strength of Self-Compacting Geopolymer Concrete," Can. J. Civil. Eng., 38 1-8 (2011). https://doi.org/10.1139/L10-104

Cited by

  1. Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers vol.23, pp.9, 2013, https://doi.org/10.3740/MRSK.2013.23.9.510
  2. Characteristics of Sulfur-Solidified Materials by the Physical Properties of Coal Bottom Ash vol.25, pp.1, 2014, https://doi.org/10.14478/ace.2013.1105
  3. Synthesizing and Assessing Fire-Resistant Geopolymer from Rejected Fly Ash vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.253
  4. Influence of Fine Aggregate Properties on Unhardened Geopolymer Concrete vol.4, pp.2, 2016, https://doi.org/10.14190/JRCR.2016.4.2.101
  5. Properties of geopolymer binders prepared from milled pond ash vol.67, pp.328, 2017, https://doi.org/10.3989/mc.2017.07716
  6. 화력발전소 매립 석탄재의 분쇄가 지오폴리머의 강도에 미치는 영향 vol.23, pp.6, 2013, https://doi.org/10.7844/kirr.2014.23.6.3
  7. 에틸렌글리콜법을 활용한 국내 순환유동층보일러 석탄회의 Free CaO 평가 연구 vol.26, pp.1, 2017, https://doi.org/10.5855/energy.2017.26.1.001