• Title/Summary/Keyword: GCB(Gas Circuit Breaker)

Search Result 53, Processing Time 0.023 seconds

Simplified Synthetic Testing Facility with Modified TRV Circuit

  • Chong, Jin-Kyo;Lee, Kyung Seob;Lee, Chang-Hoon;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.881-885
    • /
    • 2018
  • In order to develop a gas circuit breaker (GCB), the breaking performance of the short line fault (SLF) should be prioritized over that of the breaker terminal fault (BTF). In brief, it is necessary to evaluate the thermal characteristics of the insulating gas that is filled in a GCB. In the process of developing a GCB, many companies use the simplified synthetic testing facility (SSTF).In order to evaluate the SLF breaking performance of a GCB with a long minimum arcing time, a modifications to the conventional SSTF was proposed. In this study, we developed the SSTF with a modified transient recovery voltage circuit. The performance of the newly developed SSTF was verified by an $L_{90}$ breaking performance test on a rating combination of 170 kV, 50 kA, and 60 Hz.

Analysis of a Gas Circuit Breaker Using the Fast Moving Least Square Reproducing Kernel Method

  • Lee, Chany;Kim, Do-Wan;Park, Sang-Hun;Kim, Hong-Kyu;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.272-276
    • /
    • 2009
  • In this paper, the arc region of a gas circuit breaker (GCB) is analyzed using the fast moving least square reproducing kernel method (FMLSRKM) which can simultaneously calculate an approximated solution and its derivatives. For this problem, an axisymmetric and inhomogeneous formulation of the FMLSRKM is used and applied. The field distribution obtained by the FMLSRKM is compared to that of the finite element method. Then, a whole breaking period of a GCB is simulated, including analysis of the arc gas flow by finite volume fluid in the cell, and the electric field of the arc region using the FMLSRKM.

Analysis of SLF Interruption Performance in self-blast Gas Circuit Breaker (복합소호형 가스 차단기의 SLF 차단 성능 해석)

  • Park, Jin-gun;Ahn, Hee-sup;Choi, Jongung;Kim, Younggeun;Cho, Heayong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.24-32
    • /
    • 2020
  • A self-blast type gas circuit breaker has been studied in this study to improve efficiency of interrupting performance of short line fault(SLF). Hot gas flows of gas circuit breaker have been simulated to evaluate interruption performance using CFD. Design parameters such as various types of expansion chamber and nozzles are suggested by using simulation results. Simulated results and experimental ones are compared with previous (ones that of in under development and with capacitor) GCB. Modified new shape of an expansion chamber and nozzle has been suggested to improve the efficiency of gas flow and to provide guidelines for designing self-blast breaker with a higher interruption capability.

An Analysis of Cold Gas Flow-Field for UHV Class Interrupters (초고압 가스차단부의 냉가스 유동해석)

  • Song, Gi-Dong;Park, Gyeong-Yeop;Song, Won-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.387-394
    • /
    • 2000
  • This paper presents a method of cold gas flow-field analysis within puffer type GCB(Gas Circuit Breaker). Using this method, the entire interruption process including opening operation of GCB can be simulated successfully. In particular, the distortion problem of the grid due to the movement of moving parts can be dealt with by the fixed grid technique. The gas parameters such as temperature, pressure, density, velocity through the entire interruption process can be calculated and visualized. It was confirmed that the time variation of pressure which was calculated from the application of the method to a model GCB agreed with the experimental one. Therefore it is possible to evaluate the small current interruption capability analytically and to design the interrupter which has excellent interruption capability using the proposed method. It is expected that the proposed method can reduce the time and cost for development of GCB very much. It also will be possible to develop the hot-gas flow-field analysis program by combining the cold-gas flow field program with the arc model and to evaluate the large current interruption capability.

  • PDF

The Development of 25.8kV 25kA Outdoor Type GCB (25.8kV 25kA 옥외용 GCB 개발)

  • Yoon, K.S.;Song, W.P.;Lee, C.H.;Noh, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.214-215
    • /
    • 1994
  • The VCB(Vacuum Circuit Breaker), which has been used in power distribution system, have prevented the performance of the phase modifying equipment (Condenser Bank and Shunt Reactor) and the important parts in the electric power system because of the transient voltage in opening and closing circuit. So, we developed the 25.8kV $SF_6$ gas GCB(GAS Circuit Breaker), which had the few occurance of the surge in opening & closing circuit and had the high reliability, based in our own technology.

  • PDF

A Study on the Program Analyzing the Arc Phenomena in Gas Circuit Breaker (가스차단기의 아크현상 해석프로그램에 대한 연구)

  • Choi, Young-Kil;Choi, Sang-Tae;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.74-81
    • /
    • 2011
  • A computational approach was developed to understand about the arc quenching process in a gas circuit breaker(GCB). This approach is a program to analyze the gas flow in the breaker. The arc is processed at the same time. The program was used the so-called FLIC method for gas analysis techniques. It was referenced that the arc is interpreted the 'a Simplified Enthalpy Flow Arc Model'. In order to validate about the results of the program, a Auto Puffer GCB was chosen as the test subject. Because, the breaker is the one that arc current is interrupted by using the arc heating. And also, the current interrupting capability can be obtained only owing to the positive utilization(auto puffer) of the clogging phenomenon, without other puffer actions. In this paper, it has been realized that the entire arc quenching process is computerized, which is based on the self-flow current interruption by the auto puffer action. This program, which was verified through experiments, produced good results.

The Application of Cartesian Cut Cell Method for a High-Voltage GCB (분할격자법을 이용한 초고압 가스차단기 유동해석)

  • Lee Jong C.;Ahn Heui-Sub;Kim Youn J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.91-94
    • /
    • 2002
  • It is important to develop new effective technologies for increasing the interruption capacity and reducing the size of a GCB (Gas Circuit Breaker). It is not easy to test the real GCB model in practice as in theory. Therefore, a simulation tool based on a CFD (Computational Fluid Dynamics) algorithm has been developed to facilitate an optimization of the interrupter. But the choice of grid is not at all trivial in the complicated geometries like a GCB. In this paper, we have applied a CFD-CAD integration using Cartesian cut-cell method, which is one of the grid generation techniques for dealing with complex and multi-component geometries.

  • PDF

Damage Cause Analysis for GCB of 154kv Power Plant (154kV 전력계통 가스차단기(GCB) 소손원인 조사분석)

  • Lee, Eun-Chun;Shin, Gang-Wook;Hong, Sung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.425-427
    • /
    • 2000
  • The purpose of this study is to find the cause of the damage to the GCB(Gas Circuit Breaker), since the GCB of the 154kV power plant at the Hap-Cheon Dam has already been damaged twice. We researched the characteristics of this class of circuit breaker and the possible causes for this type of damage to the GCB using the FTA(Fault Tree Analysis) Method. We studied the optimal maintenance method of the GCB, the stability analysis and power serge protection of Hap-Cheon Dam, and the power serge and fault list of the power transmission line to help prevent a reoccurrence of the problem.

  • PDF

Analysis on Dynamic Characteristics of Air-Pressure Type Chamber in Puffer Circuit Breaker (공압식 조작기의 동작특성에 관한 해석)

  • Park, Sang-Hun;Bae, Chae-Yoon;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.18-20
    • /
    • 2002
  • In this paper, various forces generated in the Gas Circuit Breaker(GCB) such as operating force, repulsive force, spring force, and dashpot force are analyzed with the fluid properties and the mechanical structure. The operation of GCB can be understood. A stroke curve from the result of simulation is compared with experimental one.

  • PDF

Performance Evaluation of a $SF_6$ Gas Circuit Breaker with Experimental Investigation (초고압 $SF_6$ 가스 차단기의 실험적 차단성능 평가)

  • Jeong, Y.W.;Park, H.T.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.96-99
    • /
    • 2005
  • In this study, we build system and techniques of evaluating the interruption performance of the GCB with experimental method. We constructed a simplified synthetic test circuit of which ability is up to 245kV, 50kA BTF test. And We composed a model test circuit breaker with puffer assisted self blasting type GCB. With this circuit breaker, we carried out the experiment of no load and SLF90. During the tests, we measured the several factors such as stroke, pressure, arc temperature, the voltage and current near the current zero and dI/dt, dV/dt. Arc conductivity before 200ns before current zero which is one of the indexes of the thermal recovery of a GCB was measured. With these kinds of measurement, we could estimate the performance of a GCB fundamentally. Futhermore these results were used to adjust the arc modeling with CFD(computational fluid dynamics) and we could increase the plausibility of the analytical method.

  • PDF