• Title/Summary/Keyword: GC-profile

Search Result 109, Processing Time 0.024 seconds

Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis

  • Jung, Sung-Min;Hur, Youn-Young;Preece, John E.;Fiehn, Oliver;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.489-499
    • /
    • 2016
  • Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.

Change of Essential Oil Constituents during Flue-curing Process in Flue-cured Tobacco, NC82 & KF114 (황색종 NC82와 KFl14의 건조단계별 정유성분의 변화)

  • Hong, Yeol;Lim, Heung-Bin;Seok, Young-Sun;Shin, Ju-Sik;Kim, Jong-Yeol;Ra, Do-Young;Lee, Hak-Su
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.2
    • /
    • pp.168-178
    • /
    • 2001
  • Essential oil in tobacco leaves influences the taste and aroma of cigarette smoke and is important to tobacco quality. This study was conducted to investigate the change in the level of essential oil components during flue-curing process of two flue-cured tobaccos, NC82 and KEl14. Flue-curing process was divided by six steps; harvest stage, the end of yellowing stage, the middle of color fixing stage, the end of color fixing stage, the middle of midrib drying stage, full-cured stage. NC82 in each stage contained 0.28%, 0.30%, 0.35%, 0.36%, 0.40% and 0.42% essential oil, respectively, and KF114 were 0.29%, 0.31%, 0.34%, 0.36%, 0.39% and 0.41%, respectively. Almost all hydrocarbons on the basis of relative peak area were gradually increased in two varieties with curing, neophytadiene content in them was highest at the full-cured stage. Most of alcohols and esters with curing showed a declining trend, but benzyl alcohol was increased in two tobaccos. Ketones were largely increased at the midrib drying stage during the curing process, especially, the most largely increasing constituent was $\beta$-damascenone among them. The content of 2-butylterahydrofuran, heterocyclic compounds, was largely increased at tile color fixing stage. There was no considerable difference between NC82 and KFl14 at the GC profile of essential oil and the pattern of each components during flue-curing process.

  • PDF

Development of Source Profiles and Estimation of Source Contribution for VOCs by the Chemical Mass Balance Model in the Yeosu Petrochemical Industrial Complex (여수석유화학산단 내 VOCs에 대한 오염원 분류표의 개발 및 CMB 모델에 의한 기여도 산정)

  • Jeon Jun-Min;Hur Dong;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.83-96
    • /
    • 2005
  • The purposes of this study were to characterize the local levels of VOCs (volatile organic compounds), to develop source profiles of VOCs, and to quantify the source contribution of VOCs using the CMB (chemical mass balance) model. The concentration of VOCs had been measured every 6-day duration in the SRO monitoring site in the Yeosu Petrochemical Industrial Complex from September 2000 to August 2002. The total of 35 target VOCs, which were included in the TO-14 designated from the U.S. EPA, was selected to be monitored in the study area. During a 24-h period, the ambient VOCs were sampled by using canisters placing about 10 ~ 15 m above the ground level. The collected canisters were then analyzed by a GC-MS in the laboratory. Aside from ambient sampling at the SRO site, the VOCs had been intensively and massively measured from 8 direct sources and 4 general sources in the study area. The results obtained in the study were as follows; first, the annual mean concentrations of the target VOCs were widely distributed regardless of monitoring sites in the Yeosu Petrochemical Industrial Complex. In particular, the concentrations of BTX (Benzene, Toluene, Xylene), vinyl chloride were higher than other target compounds. Second, based on these source sample data, source profiles for VOCs were developed to apply a receptor model, the CMB model. Third, the results of source apportionment study for the VOCs in the SRO Site were as follows; The source of petrochemical plant was apportioned by 31.3% in terms of VOCs mass. The site was also affected by 16.7% from wastewater treatment plant, 14.0% from iron mills, 8.4% from refineries, 4.4% from oil storage, 3.8% from automobiles, 2.3% from fertilizer, 2.3% from painting, 2.2% from waste incinerator, 0.6% from graphic art, and 0.4% from gasoline vapor sources.

Genomic Analysis of Dairy Starter Culture Streptococcus thermophilus MTCC 5461

  • Prajapati, Jashbhai B.;Nathani, Neelam M.;Patel, Amrutlal K.;Senan, Suja;Joshi, Chaitanya G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.459-466
    • /
    • 2013
  • The lactic acid bacterium Streptococcus thermophilus is widely used as a starter culture for the production of dairy products. Whole-genome sequencing is expected to utilize the genetic basis behind the metabolic functioning of lactic acid bacterium (LAB), for development of their use in biotechnological and probiotic applications. We sequenced the whole genome of Streptococcus thermophilus MTCC 5461, the strain isolated from a curd source, by 454 GS-FLX titanium and Ion Torrent PGM. We performed comparative genome analysis using the local BLAST and RDP for 16S rDNA comparison and by the RAST server for functional comparison against the published genome sequence of Streptococcus thermophilus CNRZ 1066. The whole genome size of S. thermophilus MTCC 5461 is of 1.73Mb size with a GC content of 39.3%. Streptococcal virulence-related genes are either inactivated or absent in the strain. The genome possesses coding sequences for features important for a probiotic organism such as adhesion, acid tolerance, bacteriocin production, and lactose utilization, which was found to be conserved among the strains MTCC 5461 and CNRZ 1066. Biochemical analysis revealed the utilization of 17 sugars by the bacterium, where the presence of genes encoding enzymes involved in metabolism for 16 of these 17 sugars were confirmed in the genome. This study supports the facts that the strain MTCC 5461 is nonpathogenic and harbors essential features that can be exploited for its probiotic potential.

Evaluating the Headspace Volatolome, Primary Metabolites, and Aroma Characteristics of Koji Fermented with Bacillus amyloliquefaciens and Aspergillus oryzae

  • Seo, Han Sol;Lee, Sunmin;Singh, Digar;Park, Min Kyung;Kim, Young-Suk;Shin, Hye Won;Cho, Sun A;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1260-1269
    • /
    • 2018
  • Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.

1H-NMR-Based Metabolic Profiling of Cordyceps militaris to Correlate the Development Process and Anti-Cancer Effect

  • Oh, Junsang;Choi, Eunhyun;Yoon, Deok-Hyo;Park, Tae-Yong;Shrestha, Bhushan;Choi, Hyung-Kyoon;Sung, Gi-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1212-1220
    • /
    • 2019
  • The study of metabolomics in natural products using the diverse analytical instruments including GC-MS, LC-MS, and NMR is useful for the exploration of physiological and biological effects and the investigation of drug discovery and health functional foods. Cordyceps militaris has been very attractive to natural medicine as a traditional Chinese medicine, due to its various bioactive properties including anti-cancer and anti-oxidant effects. In this study, we analyzed the metabolite profile in 50% ethanol extracts of C. militaris fruit bodies from three development periods (growth period, matured period, and aging period) using $^1H-NMR$, and identified 44 metabolites, which are classified as 16 amino acids, 10 organic acids, 5 carbohydrates, 3 nucleotide derivatives, and 10 other compounds. Among the three development periods of the C. militaris fruit body, the aging period showed significantly higher levels of metabolites including cordycepin, mannitol (cordycepic acid), and ${\beta}-glucan$. Interestingly, these bioactive metabolites are positively correlated with antitumor growth effect; the extract of the aging period showed significant inhibition of HepG2 hepatic cancer cell proliferation. These results showed that the aging period during the development of C. militaris fruit bodies was more highly enriched with bioactive metabolites that are associated with cancer cell growth inhibition.

Chemical Composition of Aromas and Lipophilic Extracts from Black Morel (Morchella importuna) Grown in China

  • Tu, Xiaoman;Tang, Lan;Xie, Guangbo;Deng, Kejun;Xie, Liyuan
    • Mycobiology
    • /
    • v.49 no.1
    • /
    • pp.78-85
    • /
    • 2021
  • Morels (Morchella spp.) are valuable medicinal and edible mushrooms. In this study, chemical profiles of aromas and lipophilic extracts of black morel (Morchella importuna) grown in China were analyzed by gas chromatography/mass spectroscopy, along with the evaluation of antioxidant and antimicrobial activities for the lipophilic extracts. Sixty-five compounds in total were identified from the aromas, and 1-octen-3-ol was the main component for aromas of fresh (34.40%) and freeze-dried (68.61%) black morels, while the most abundant compound for the aroma of the oven-dried sample was 2(5H)-furanone (13.95%). From the lipophilic extracts, 29 compounds were identified with linoleic acid as the main compound for fresh (77.37%) and freeze-dried (56.46%) black morels and steroids (92.41%) as the main constituent for an oven-dried sample. All three lipophilic extracts showed moderate antioxidant activities against 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) with the IC50 values ranging 7.56~17.52 mg/mL and 5.75~9.73 mg/mL, respectively, and no obvious antimicrobial activity was observed for lipophilic extracts. The drying methods affect the chemical profile of black morel, and freeze-drying was favorable for retaining nutrients and morel smell. This is the first report on the aroma and lipophilic extracts of M. importuna grown in China.

Evaluation of extraction methods for essential oils in mugwort (Artemisia montana) using gas chromatography-mass spectrometry

  • Kim, Jihwan;Oh, Si-Eun;Choi, Eunjung;Lee, Sung-Hoon;Hwang, In Hyun;Kim, Ju-Young;Lee, Wonwoong
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • Mugwort (Artemisia montana), which is a perennial plant mainly distributed throughout Northeast Asian regions, has been used as a preferred source of various foods and traditional medicines in Korea. In particular, as essential oils extracted from mugwort were reported to be biologically active, its steam distillate has been widely used to treat various conditions, such as itching, hemorrhoids, and gynecological inflammation. Therefore, efforts have been devoted to develop effective methods for the collection of bioactive essential oils from mugwort. In this study, five mugwort extracts were obtained using different extraction conditions, namely, 6 % ethanol at room temperature and at 80 ℃, pure ethanol, n-hexane, and an adsorbent resin. To evaluate the five extracts of mugwort, area-under-the-curve values (AUCs), chemical profiles, and major bioactive essential oil contents were investigated using gas chromatography-mass spectrometry (GC-MS). An overall assessment of the volatile components, including essential oils, in the five extracts was conducted using AUCs, and the individual essential oil in each extract was identified. Furthermore, the four major essential oils (1,8-cineole, camphor, borneol, and α-terpineol), which are known to possess anti-microbial and anti-inflammatory activities, were quantified using authentic chemical standards. Based on the evaluation results, pure ethanol was the best extractant out of the five used in this study. This study provides evaluation results for the five different mugwort extracts and would be helpful for developing extraction methods to efficiently collect the bioactive oil components for medical purposes using chemical profiles of the extracts.

Volatile Flavor Properties of Hallabong Grown in Open Field and Green House by GC/GC-MS and Sensory Evaluation (노지 및 시설에서 재배된 한라봉의 기기분석 및 관능평가에 의한 향기특성)

  • Song, Hee-Sun;Park, Yeon-Hee;Moon, Doo-Gyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1239-1245
    • /
    • 2005
  • Hallabong peel oils grown in open field and green house were extracted by hand-pressing flavedo and collected on ice. Volatile flavor components of Hallabong peel oils were identified and compared by using gas chromatography and mass- spectrometry. Forty-four flavor components were identified in open field oil and 45 flavor components in green house oil. (E) -Limonene-1,2-epoxide and neral were identified only in Hallabong oil grown in open field, on the other hand, $\beta$-cubebene, $\beta$-elemene and decyl acetate were detected only in green house oil. Limonene was the most abundant component in both oils as more than 86$\%$ of peak weight, followed by sabinene (1.8$\~$ 3.6$\%$) and myrcene (2.4$\~ $2.6$\%$). The difference of the volatile profile between open field and green house oils were significantly characterized by identification and quantity of alcohol group. The total alcohols in open field and green house oils accounted for 1.8$\%$ and 0.8$\%$, respectively. Among alcohols, the level of linalool was relatively high in open field oil (1.2$\%$), however, it accounted for 0.5$\%$ in green house oil. Flavor properties of fresh Hallabong peel and flesh were also examined by sensory evaluation. Flavor properties of fresh Hallabong grown in open field were relatively stronger on both peel and flesh by sensory analysis. Sweetness was strong in Hallabong flesh from open field, and sourness in that from green house. The sensory evaluation of the preference in consideration of taste and aroma was significantly high in Hallabong grown in open field (p<0.01). From the present study, the stronger flayer properties and the preference of Hallabong from open field by sensory evaluation seem to be associated with the high level of linalool in its peel oil, and the composition of monoterpene hydrocarbons such as sabinene and (E) -$\beta$ -ocimene.

A Randomized Phase III Study of Patients With Advanced Gastric Adenocarcinoma Without Progression After Six Cycles of XELOX (Capecitabine Plus Oxaliplatin) Followed by Capecitabine Maintenance or Clinical Observation

  • Guk Jin Lee;Hyunho Kim;Sung Shim Cho;Hyung Soon Park;Ho Jung An;In Sook Woo;Jae Ho Byun;Ji Hyung Hong;Yoon Ho Ko;Der Sheng Sun;Hye Sung Won;Jong Youl Jin;Ji Chan Park ;In-Ho Kim;Sang Young Roh;Byoung Yong Shim
    • Journal of Gastric Cancer
    • /
    • v.23 no.2
    • /
    • pp.315-327
    • /
    • 2023
  • Purpose: Oxaliplatin, a component of the capecitabine plus oxaliplatin (XELOX) regimen, has a more favorable toxicity profile than cisplatin in patients with advanced gastric cancer (GC). However, oxaliplatin can induce sensory neuropathy and cumulative, dose-related toxicities. Thus, the capecitabine maintenance regimen may achieve the maximum treatment effect while reducing the cumulative neurotoxicity of oxaliplatin. This study aimed to compare the survival of patients with advanced GC between capecitabine maintenance and observation after 1st line XELOX chemotherapy. Materials and Methods: Sixty-three patients treated with six cycles of XELOX for advanced GC in six hospitals of the Catholic University of Korea were randomized 1:1 to receive capecitabine maintenance or observation. The primary endpoint was progression-free survival (PFS), analyzed using a two-sided log-rank test stratified at a 5% significance level. Results: Between 2015 and 2020, 32 and 31 patients were randomized into the maintenance and observation groups, respectively. After randomization, the median number of capecitabine maintenance cycles was 6. The PFS was significantly higher in the maintenance group than the observation group (6.3 vs. 4.1 months, P=0.010). Overall survival was not significantly different between the 2 groups (18.2 vs. 16.5 months, P=0.624). Toxicities, such as hand-foot syndrome, were reported in some maintenance group patients. Maintenance treatment was a significant factor associated with PFS in multivariate analysis (hazard ratio, 0.472; 95% confidence interval, 0.250-0.890; P=0.020). Conclusions: After 6 cycles of XELOX chemotherapy, capecitabine maintenance significantly prolonged PFS compared with observation, and toxicity was manageable. Maintenance treatment was a significant prognostic factor associated with PFS.