• Title/Summary/Keyword: GAs analysis

Search Result 9,076, Processing Time 0.036 seconds

Analysis for Cause of Corrosion and Gas Leakage on LP-Gas Cylinder (LP가스 용기의 부식 및 가스누출 원인 분석)

  • Choi S. C.;Jo Y. D.;Kweon J. R.;Kim J. Y.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.52-59
    • /
    • 2001
  • Factors to cause accidents were investigated through a systematic analysis of leakage accidents in welded LP-gas cylinder between 199 and 1999. As a result It was showed that most of leakage accident occurred at the pin-hole due to the localized corrosion on welded zone in cylinder. Accordingly, in this paper, we suggested that the problems of heat treatment condition in two-piece welded cylinder and substitute proposal for preventing the tearing of T zone in three-piece welded cylinder. Furthermore, corrosion rate on the weldment and base metal of welded LP-gas cylinder was evaluated using the electrochemical tests in acid rain and $3.5\%NaCl$ solution, Also, the poor adhesion and defects of film which was produced by electrostatic powder spray painting, while the LP-gas cylinder was manufactured, were analyzed using SEM(Scanning Electron Microscopy). And we proposed a optimum coating thickness of the cylinder.

  • PDF

The Analysis of NOx Gas Detection Characteristics for the Gas Sensor Using the MWCNT/ZnO Composites Film (MWCNT/ZnO 복합체 필름을 이용한 가스센서의 NOx가스 검출 특성 분석)

  • Kim, Hyun-Soo;Lee, Won-Jae;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.312-316
    • /
    • 2016
  • In this study, we fabricated $NO_x$ gas sensor by using multi-walled carbon nanotubes(MWCNT)/zinc oxide(ZnO) composite film. Carbon nanotubes (CNTs) have good electronic, chemical-stability, and sensitivity characteristics. And zinc oxide (ZnO) is a wide band gap and large exciton binding energy semiconductor. In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_x$ gas for different values of the $NO_x$ gas concentrations. The gas sensor that absorbed$NO_x$ gas molecules showed a increasing in resistance. The sensitivity of the gas sensor was increased by increasing the gas concentrations. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained the sensitivity. And the comparison analysis to ZnO film gas sensor for detecting $NO_x$ gas. From the experiment result, we confirmed improvement of $NO_x$ gas detection characteristics using the MWCNT/ZnO composite film.

Numerical Analysis of Flow Characteristic of Residual Gas due to Changes in Valve Timings during an Idle Operation in an SI Engine (가솔린 기관의 공회전 시 밸브 타이밍 변경에 따른 잔류가스 유동 변화에 관한 해석적 연구)

  • Lee, Joon-Ho;Kim, Duk-Sang;Baik, Doo-Sung;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.50-56
    • /
    • 2006
  • Residual gas fraction in a combustion process is very crucial to improve combustion and cyclic variations. Especially, the residual gas fraction is strongly affected by backflow of the residual gas during the valve overlap period in an idle operation. Therefore, it is one of the most interesting that valve timings can affect flow characteristics of gas exchange process, especially during idle operation. This analysis investigates residual gas fraction with respect to valve timing changes which is critical for combustion efficiency and engine performance. Flow characteristics of residual gas by changing intake and exhaust valve timing are calculated by CFD methodology during an idle operation in an SI engine. It is analyzed that retarded EVO and advanced IVO results in the increase of valve overlap period and consequently, residual gas fraction. Futhermore, changes in IVO have stronger effects on variation of residual gas fraction.

Analysis of the Gas Price Determination Factors at Gas Stations Using GIS Analysis - Centered on the Location Factors of the Gas Station and Government Offices - (GIS 분석을 통한 주유소 휘발유 가격 결정 요인 분석 - 협약주유소 입지와 관공서 입지 요인을 중심으로 -)

  • Go, Gyu-Hee;Lee, Jae Seung;Lee, Sae-Young
    • Journal of KIBIM
    • /
    • v.11 no.2
    • /
    • pp.43-53
    • /
    • 2021
  • The 'public agency oil joint purchase system' was introduced to lower public sector oil prices and contribute to the stability of the overall consumer oil market. The present study used spatial regression to analyze the factors affecting domestic gasoline price, focusing on the impact of potential implicit collusion among gas stations in determining domestic gasoline prices. Also, this study investigated the effect the location characteristics of the market convention gas stations and government offices on the pressure of price competition in the market and the gasoline price at general gas stations. To summarize the results of the spatial lag model (SLM), the individual characteristics of gas stations such as convenience stores (+), self-fuelling (-), commercial areas (+), subway stations (+), population density (-), and sales (-) are correlated to gasoline prices at gas stations, and the institutional location factors of gas stations (+) affected the average of 9 won per liter, 11 won per liter. In order to solve these problems, the establishment of a monitoring system reflecting the location characteristics of the region and the ongoing review of the system should be carried out. In addition, separate, expanded and promotional measures should be prepared for the convenience of general and public oil buyers.

A Forensic Engineering Study on Bursting Accident of Composite Pressure Vessel in CNG Bus (CNG버스 복합재 압력용기 파열사고에 관한 법공학적 연구)

  • Kim, Eui-Soo;Kim, Jin-Pyo;Park, Nam-Kyu;Kim, Youn-Hoi
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • The bus using compressed natural gas(CNG) trend to be extended in use internationally as optimal counter-plan for reducing discharge gas of light oil due to high concern about environment. But, Composit pressure vessels(CPV) to be equipped with CNG bus is always involved in the point that safety accidents happen due to having compressed natural gas. In this report, we analysis the cause of CPV bursting accident by reviewing design and manufacture factor and suggest preventive measure through this case.

Evaluation of Structural Integrity and Leakage for a Gas Turbine Casing (가스터빈 케이싱의 구조안전성 및 누설 평가)

  • Seo, Hee Won;Ham, Dong Woo;Kim, Kyung Kook;Han, Jeong Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.347-354
    • /
    • 2016
  • Because typical gas turbine systems have frequent startup and shutdown operations, it is likely to cause cracks at the gas turbine casing and gas leakages at casing flanges due to thermal fatigue and embrittlement. Therefore, the evaluation of structural integrity and gas leakage at the gas turbine casings must be performed. In this paper, we have evaluated the structural integrity of the turbine casing and bolts under a normal operation in accordance with ASME B&PVC and evaluated the leakage at casing flanges by examination of contact pressure calculated using the finite element analysis. Finally, we propose a design flow including finite element modeling, the interpretation and evaluation methods for gas turbine casings. This may be utilized in the design and development of gas turbine casings.

Validation of diesel engine gas flow one-dimensional numerical analysis using the method of characteristics (특성곡선법을 이용한 디젤엔진 가스유동 1차원 수치해석의 타당성 평가)

  • KIM, Kyong-Hyon;KONG, Kyeong-Ju
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.3
    • /
    • pp.230-237
    • /
    • 2020
  • In order to design a diesel engine system and predict its performance, it is necessary to analyze the gas flow of the intake and exhaust system. A gas flow analysis in three-dimensional (3D) format needs a high-resolution workstation and enormous time for analysis. Therefore, the method of characteristics (MOC) was used for a gas flow analysis with a fast calculation time and a low-resolution workstation. An experiment was conducted on a single cylinder diesel engine to measure pressure in cylinder, intake pipe and exhaust pipe. The one-dimensional (1D) gas flow was analyzed under the same conditions as the experiment. The engine speed, valve timing and compression ratio were the same conditions and the intake pressure was inputted as the experimental results. Bent pipe such as an exhaust port that cannot be realized in 1D was omitted. As results of validation, the cylinder pressure showed accuracy, but the exhaust pipe pressure exhibited inaccuracy. This is considered as an error caused by the failure to implement a bent pipe such as an exhaust port. When analyzed in 3D, calculation time required 61 hours more based on a model of this study. In the future, we intend to implement a bent pipe that cannot be realized in 1D using 3D and prepare a method to supplement reliability by using 1D-3D coupling.

Integrated Structural Dynamic Response Analysis considering the UNDEX Shock Wave and Gas Bubble Pulse (수중폭발 충격파와 가스구체 압력파를 함께 고려한 구조물의 동적응답해석)

  • Lee, Sang-Gab;Hwon, Jeong-Il;Chung, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.148-153
    • /
    • 2007
  • Two typical impact loadings, shock wave and gas bubble pulse, due to UNDEX(UNDerwater EXplosion), should be considered together for the closest response analysis of structure subjected to UNDEX to a reality. Since these two impact loadings have different response time bands, however, their response characteristics of structure are different from each other. It is impossible to consider these effectively under the current computational environment and the mathematical model has not yet been developed. Whereas Hicks model approximates the fluid-structure interaction due to gas bubble pulse as virtual mass effect, treating the flow by the response of gas bubble after shock wave as incompressible ideal fluid contrary to the compressible flow due to shock wave, Geers-Hunter model could make the closest response analysis of structure under UNDEX to a real one as a mathematical model considering the fluid-structure interaction due to shock wave and gas bubble pulse together using acoustic wave theory and DAA(Doubly Asymptotic Approximation). In this study, the application and effectiveness of integrated dynamic response analysis of submerged structure was examined with the analysis of the shock wave and gas bubble pulse together.

Numerical analysis of a flow field in gas atomization process using a TVD scheme (TVD기법을 이용한 가스 분무 공정의 유동장 해석)

  • Shim Eun Bo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.131-136
    • /
    • 1996
  • The numerical method for the flow field of a gas atomization process is presented. For the analysis of the compressible supersonic jet flow of a gas. an axisymmetric Navier-Stokes equations are solved using a LU-factored upwind method. The MUSCL type TVD scheme is used for the discretization of inviscid flux, whereas Steger-Warming splitting and LU factorization is applied to the implicit operator. For the validation of the present method, we computed the flow field around the simple gas atomizer proposed by Issac. The numerical results has shown excellent agreement with the experimental data.

  • PDF

Development of Economic Prediction Model for Internal Combustion Engine by Dual Fuel Generation (내연기관엔진의 가스혼소발전 경제성 예측모델 개발)

  • HUR, KWANG-BEOM;JANG, HYUCK-JUN;LEE, HYEONG-WON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.380-386
    • /
    • 2020
  • This paper represents an analysis of the economic impact of firing natural gas/diesel and natural gas/by-product oil mixtures in diesel engine power plants. The objects of analysis is a power plant with electricity generation capacity (300 kW). Using performance data of original diesel engines, the fuel consumption characteristics of the duel fuel engines were simulated. Then, economic assessment was carried out using the performance data and the net present value method. A special focus was given to the evaluation of fuel cost saving when firing natural gas/diesel and natural gas/by-product oil mixtures instead of the pure diesel firing case. Analyses were performed by assuming fuel price changes in the market as well as by using current prices. The analysis results showed that co-firing of natural gas/diesel and natural gas/by-product oil would provide considerable fuel cost saving, leading to meaningful economic benefits.