• Title/Summary/Keyword: GA3

Search Result 516, Processing Time 0.022 seconds

A Study on Morphology Control of (Ga1-xZnx)(N1-xOx) Nanofibers according to the Composition and Crystallinity of Oxide Nanofibers Synthesized by Electrospinning (전기방사로 합성된 산화물 나노섬유의 조성 및 결정화도에 따른 (Ga1-xZnx)(N1-xOx) 나노섬유의 형상 제어 연구)

  • Kim, Jeong Hyun;Oh, Sung-Tag;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2021
  • The (Ga1-xZnx)(N1-xOx) solid solution is attracting extensive attention for photocatalytic water splitting and wastewater treatment owing to its narrow and controllable band gap. To optimize the photocatalytic performance of the solid solution, the key points are to decrease its band gap and recombination rate. In this study, (Ga1-xZnx)(N1-xOx) nanofibers with various Zn fractions are prepared by electrospinning followed by calcination and nitridation. The effect of the composition and crystallinity of electrospun oxide nanofibers on the morphology and optical properties of the obtained solid-solution nanofibers are systematically investigated. The results show that the final shape of the (Ga1-xZnx) (N1-xOx) material is greatly affected by the crystallinity of the oxide nanofibers before nitridation. The photocatalytic properties of (Ga1-xZnx)(N1-xOx) with different Ga:Zn atomic ratios are investigated by studying the degradation of rhodamine B under visible light irradiation.

Microstructure and Compositional Distribution of Selenized Cu(In,Ga)Se2 Thin Film Utilizing Cu2In3, CuGa and Cu2Se (Cu2In3, CuGa, Cu2Se를 이용한 전구체박막을 셀렌화하여 제조한 Cu(In,Ga)Se2 박막의 미세구조 및 농도분포 변화)

  • Lee, Jong-Chul;Jung, Gwang-Sun;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.550-555
    • /
    • 2011
  • A high-quality CIGS film with a selenization process needs to be developed for low-cost and large-scale production. In this study, we used $Cu_2In_3$, CuGa and $Cu_2Se$ sputter targets for the deposition of a precursor. The precursor deposited by sputtering was selenized in Se vapor. The precursor layer deposited by the co-sputtering of $Cu_2In_3$, CuGa and $Cu_2Se$ showed a uniform distribution of Cu, In, Ga, and Se throughout the layer with Cu, In, CuIn, CuGa and $Cu_2Se$ phases. After selenization at $550^{\circ}C$ for 30 min, the CIGS film showed a double-layer microstructure with a large-grained top layer and a small-grained bottom layer. In the AES depth profile, In was found to have accumulated near the surface while Cu had accumulated in the middle of the CIGS film. By adding a Cu-In-Ga interlayer between the co-sputtered precursor layer and the Mo film and adding a thin $Cu_2Se$ layer onto the co-sputtered precursor layer, large CIGS grains throughout the film were produced. However, the Cu accumulated in the middle of CIGS film in this case as well. By supplying In, Ga and Se to the CIGS film, a uniform distribution of Cu, In, Ga and Se was achieved in the middle of the CIGS film.

Synthesis and Molecular Structures of $2-SC_4H_3CH=NN(H)C_6H_5 and (GaMe_2)_2(2-SC_4H_3CH=NNC_6H_5)_2$ ($2-SC_4H_3CH=NN(H)C_6H_5$$(GaMe_2)_2(2-SSC_4H_3CH=NNC_6H_5)_2$의 합성과 분자 구조)

  • 박권일;김용기;조성일
    • Korean Journal of Crystallography
    • /
    • v.11 no.1
    • /
    • pp.46-51
    • /
    • 2000
  • The molecular structures of 2-SC₄H₃CH=NN(H)C/sub 6/H/sub 5/(C/sub 11/H/sub 10/N₂S) and (GaMe₂)₂(2-SC₄H₃CH=NNC/sub 6/H/sub 5/)₂(C/sub 26/H/sub 30/Ga₂N₄S₂) have been determined by X-ray diffraction. Crystallographic data for 2-SC₄H₃CH=NN(H)C/sub 6/H/sub 5/:orthorhombic space group P2₁2₁2₁, a=6.108(1)Å, b=7.593(1)Å, c=22.356(2)Å, V=1037.1(3)ų, Z=4, R=0.0613. Crystallographic data for (GaMe₂)₂(2-SC₄H₃CH=NNC/sub 6/H/sub 5/)₂:monoclinic space group P2₁/n, a=15.996(2) Å, c=9.879(3)Å, β=100.07.(2)°, V=2764.599)ų, Z=4, R=0.0503.

  • PDF

CO2 Reduction and C2H4 Production Using Nanostructured Gallium Oxide Photocatalyst (산화갈륨 나노구조 광촉매 특성을 이용한 이산화탄소 저감 및 에틸렌 생성 작용)

  • Seo, Dahee;Ryou, Heejoong;Seo, Jong Hyun;Hwang, Wan Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.308-310
    • /
    • 2022
  • Ultrawide bandgap gallium oxide (Ga2O3) semiconductors are known to have excellent photocatalytic properties due to their high redox potential. In this study, CO2 reduction is demonstrated using nanostructured Ga2O3 photocatalyst under ultraviolet (254 nm) light source conditions. After the CO2 reduction, C2H4 remained as a by-product in this work. Nanostructured Ga2O3 photocatalyst also showed an excellent endurance characteristic. Photogenerated electron-hole pairs boosted the CO2 reduction to C2H4 via nanostructured Ga2O3 photocatalyst, which is attributed to the ultrawide and almost direct bandgap characteristics of the gallium oxide semiconductor. The findings in this work could expedite the realization of CO2 reduction and a simultaneous C2H4 production using a low cost and high performance photocatalyst.

Electrical Characterization of Lateral NiO/Ga2O3 FETs with Heterojunction Gate Structure (이종접합 Gate 구조를 갖는 수평형 NiO/Ga2O3 FET의 전기적 특성 연구)

  • Geon-Hee Lee;Soo-Young Moon;Hyung-Jin Lee;Myeong-Cheol Shin;Ye-Jin Kim;Ga-Yeon Jeon;Jong-Min Oh;Weon-Ho Shin;Min-Kyung Kim;Cheol-Hwan Park;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.413-417
    • /
    • 2023
  • Gallium Oxide (Ga2O3) is preferred as a material for next generation power semiconductors. The Ga2O3 should solve the disadvantages of low thermal resistance characteristics and difficulty in forming an inversion layer through p-type ion implantation. However, Ga2O3 is difficult to inject p-type ions, so it is being studied in a heterojunction structure using p-type oxides, such as NiO, SnO, and Cu2O. Research the lateral-type FET structure of NiO/Ga2O3 heterojunction under the Gate contact using the Sentaurus TCAD simulation. At this time, the VG-ID and VD-ID curves were identified by the thickness of the Epi-region (channel) and the doping concentration of NiO of 1×1017 to 1×1019 cm-3. The increase in Epi region thickness has a lower threshold voltage from -4.4 V to -9.3 V at ID = 1×10-8 mA/mm, as current does not flow only when the depletion of the PN junction extends to the Epi/Sub interface. As an increase of NiO doping concentration, increases the depletion area in Ga2O3 region and a high electric field distribution on PN junction, and thus the breakdown voltage increases from 512 V to 636 V at ID =1×10-3 A/mm.

Growth of Si-Doped β-Ga2O3 Epi-Layer by Metal Organic Chemical Vapor Deposition U sing Diluted SiH4 (유기 금속 화학 증착법(MOCVD)의 희석된 SiH4을 활용한 Si-Doped β-Ga2O3 에피 성장)

  • Hyeong-Yun Kim;Sunjae Kim;Hyeon-U Cheon;Jae-Hyeong Lee;Dae-Woo Jeon;Ji-Hyeon Park
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.525-529
    • /
    • 2023
  • β-Ga2O3 has become the focus of considerable attention as an ultra-wide bandgap semiconductor following the successful development of bulk single crystals using the melt growth method. Accordingly, homoepitaxy studies, where the interface between the substrate and the epilayer is not problematic, have become mainstream and many results have been published. However, because the cost of homo-substrates is high, research is still mainly at the laboratory level and has not yet been scaled up to commercialization. To overcome this problem, many researchers are trying to grow high quality Ga2O3 epilayers on hetero-substrates. We used diluted SiH4 gas to control the doping concentration during the heteroepitaxial growth of β-Ga2O3 on c-plane sapphire using metal organic chemical vapor deposition (MOCVD). Despite the high level of defect density inside the grown β-Ga2O3 epilayer due to the aggregation of random rotated domains, the carrier concentration could be controlled from 1 × 1019 to 1 × 1016 cm-3 by diluting the SiH4 gas concentration. This study indicates that β-Ga2O3 hetero-epitaxy has similar potential to homo-epitaxy and is expected to accelerate the commercialization of β-Ga2O3 applications with the advantage of low substrate cost.

Growth and thermal annealing of polycrystalline Ga2O3/diamond thin films on Si substrates (다결정 산화갈륨/다이아몬드 이종 박막 성장 및 열처리 효과 연구)

  • Seo, Ji-Yeon;Kim, Tae-Gyu;Shin, Yun-Ji;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.233-239
    • /
    • 2021
  • In this study, Ga2O3/diamond layers were grown on Si substrates to improve the thermal characteristics of Ga2O3 materials. Firstly, diamond thin film was grown on Si substrates by hot-filament chemical vapor deposition. Afterward, Ga2O3 layer was grown in the growth temperature range of from 450~600℃ by mist chemical vapor deposition. We found that layer separation happens at the Ga2O3/diamond interface at the growth temperature of 500℃. This is attributed to the different thermal expansion coefficient of the mixture of amorphous and crystalline structures during cooling process. Therefore, this study might contribute to the heat-sink-layer bonded power semiconductor applications by stabilizing the thermal properties at Ga2O3/diamond interface.

Light Emitting Diode with Multi-step Quantum Well Structure for Sensing Applications (계단형 양자우물 구조가 적용된 센서 광원 용 발광다이오드 소자)

  • Seongmin Park;Seungjoo Lee;Jajeong Woo;Yukyung Kim;Soohwan Jang
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.441-446
    • /
    • 2023
  • Electrical and optical characteristics of the GaN-based light-emitting diode (LED) with the improved multi-quantum well (MQW) structure have been studied for light source in bio-sensing systems. Novel GaN/In0.1GaN/In0.2GaN/In0.1GaN/GaN and Al0.1GaN/GaN/In0.2GaN/GaN/Al0.1GaN (MQW) structures were suggested, and their radiative recombination rate, light output power, electroluminescence, and external quantum efficiency were compared with those of the conventional GaN/In0.2GaN/GaN MQW structure using device simulation. The LED with the GaN/In0.1GaN/In0.2GaN/In0.1GaN/GaN MQW structure showed an excellent recombination rate of 5.57 × 1028 cm-3·s-1 that was more than one order improvement over that of the conventional LED. In addition, the efficiency droop was relieved by the suggested stepped MQW structure.

Effect of Wet Cold and Gibberellin Treatments on Germination of Dwarf Stone Pine Seeds (저온습윤 및 지베렐린 처리가 눈잣나무의 종자발아에 미치는 영향)

  • Lim, Hyo-In;Kim, Gil-Nam;Jang, Kyung-Hwan;Park, Wan-Geun
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.253-258
    • /
    • 2015
  • In South Korea, Pinus pumila (Pall.) Regel (dwarf stone pine) has been designated as a critically endangered species by the Korea Forest Service. We have difficulties in obtaining the seeds of P. pumila because P. pumila grows only in the Daecheongbong area (1550–1700 m above sea level) of Mt. Seorak and almost all of its cones are damaged by birds and rodents. For establishing an ex situ conservation stand of P. pumila, this study was conducted to figure out the effects of wet cold (cold stratification, prechilling) and GA3 treatment on the germination of P. pumila seeds. After cold stratification (1, 2, 3, 4, 5 months), prechilling (1, 2, 3, 4, 5 months) and GA3 treatment (0, 100, 500, 1,000, 2,000, 3,000 ㎎/L), seeds were placed on petri-dishes at 25℃ under light condition. The percentage of germination, mean germination time and the germination rate were investigated. The results showed that both of the cold stratification and prechilling were effective in improving germination performances. However, there were no significant differences in performances between the two cold treatments. Within each treatment, the germination performances improved with the period of treatment. However, after three months of treatment, the performances showed no significant improvement. The gibberellin treatment was also effective in improving seed germination of P. pumila. The percentage of germination reached 79.0% in the seeds treated with 100 ㎎/L of GA3. However, the germination performances decreased at high concentration of GA3 treatments (over 2000 ㎎/L). In conclusion, cold stratification (over 3 months) or 100 ㎎/L of GA3 treatment was considered to be the appropriate method for seedling production of P. pumila.

Structural and Electrical Properties of Co-evaporated Cu(In1-x,Gax)Se2 Thin Film Solar Cells with Varied Ga Content (Ga 함유량에 따른 Co-evaporation 방법에 의해 제조된 Cu(In1-x,Gax)Se2 박막 태양전지의 구조 및 전기적 특성)

  • Lim, Jong-Youb;Lee, Yong-Koo;Park, Jong-Bum;Kim, Min-Young;Yang, Kea-Joon;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.755-759
    • /
    • 2011
  • $Cu(In_{1-x},Ga_x)Se_2$ thin films have been considered as an effective absorber material for high efficient solar cells. In this paper, the CIGS thin films with varied Ga content were prepared using a co-evaporation process of three stage. We carry out structure and electrical optical property on the thin film in varied Ga content. CIGS thin films have been characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), four-point probe measurement, and the Hall measurement. To optimize Ga contents, Ga/(In+Ga) ratio were changed from 0.13 to 0.72. At this time the carrier concentrations were varied from $1.22{\times}10^{11}\;cm^{-3}$ to $5.07{\times}10^{16}\;cm^{-3}$, and electrical resistivity were varied from $1.11{\times}10^0\;{\Omega}-cm$ to $1.08{\times}10^2\;{\Omega}-cm$. A strong <220/204> orientation and a lager grain size were obtained at a Ga/(In+Ga) of 0.3. We were able to achieve conversion efficiency as high as 15.95% with a Ga/(In+Ga) of 0.3.