• Title/Summary/Keyword: GA(genetic algorithm)

Search Result 1,515, Processing Time 0.03 seconds

Approximate Continuous Review Inventory Models with the Consideration of Purchase Dependence (구매종속성을 고려한 근사적 연속검토 재고모형)

  • Park, Changkyu;Seo, Junyong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.98-108
    • /
    • 2015
  • This paper introduces the existence of purchase dependence that was identified during the analysis of inventory operations practice at a sales agency of dealing with spare parts for ship engines and generators. Purchase dependence is an important factor in designing an inventory replenishment policy. However, it has remained mostly unaddressed. Purchase dependence is different from demand dependence. Purchase dependence deals with the purchase behavior of customers, whereas demand dependence deals with the relationship between item-demands. In order to deal with purchase dependence in inventory operations practice, this paper proposes (Q, r) models with the consideration of purchase dependence. Through a computer simulation experiment, this paper compares performance of the proposed (Q, r) models to that of a (Q, r) model ignoring purchase dependence. The simulation experiment is conducted for two cases : a case of using a lost sale cost and a case of using a service level. For a case of using a lost sale cost, this paper calculates an order quantity, Q and a reorder point, r using the iterative procedure. However, for a case of using a service level, it is not an easy task to find Q and r. The complexity stems from the interactions among inventory replenishment policies for items. Thus, this paper considers the genetic algorithm (GA) as an optimization method. The simulation results demonstrates that the proposed (Q, r) models incur less inventory operations cost (satisfies better service levels) than a (Q, r) model ignoring purchase dependence. As a result, the simulation results supports that it is important to consider purchase dependence in the inventory operations practice.

Optimum Design of a Wind Power Tower to Augment Performance of Vertical Axis Wind Turbine (수직축 풍력터빈 성능향상을 위한 풍력타워 최적설계에 관한 연구)

  • Cho, Soo-Yong;Rim, Chae Hwan;Cho, Chong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.177-186
    • /
    • 2019
  • Wind power tower has been used to augment the performance of VAWT (Vertical Axis Wind Turbine). However, inappropriately designed wind power tower could reduce the performance of VAWT. Hence, an optimization study was conducted on a wind power tower. Six design variables were selected, such as the outer radius and the inner radius of the guide wall, the adoption of the splitter, the inner radius of the splitter, the number of the guide wall and the circumferential angle. For the objective function, the periodic averaged torque obtained at the VAWT was selected. In the optimization, Design of Experiment (DOE), Genetic Algorithm (GA), and Artificial Neural Network (ANN) have been applied in order to avoid a localized optimized result. The ANN has been continuously improved after finishing the optimization process at each generation. The performance of the VAWT was improved more than twice when it operated within the optimized wind power tower compared to that obtained at a standalone.

Soft computing based mathematical models for improved prediction of rock brittleness index

  • Abiodun I. Lawal;Minju Kim;Sangki Kwon
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.279-289
    • /
    • 2023
  • Brittleness index (BI) is an important property of rocks because it is a good index to predict rockburst. Due to its importance, several empirical and soft computing (SC) models have been proposed in the literature based on the punch penetration test (PPT) results. These models are very important as there is no clear-cut experimental means for measuring BI asides the PPT which is very costly and time consuming to perform. This study used a novel Multivariate Adaptive regression spline (MARS), M5P, and white-box ANN to predict the BI of rocks using the available data in the literature for an improved BI prediction. The rock density, uniaxial compressive strength (σc) and tensile strength (σt) were used as the input parameters into the models while the BI was the targeted output. The models were implemented in the MATLAB software. The results of the proposed models were compared with those from existing multilinear regression, linear and nonlinear particle swarm optimization (PSO) and genetic algorithm (GA) based models using similar datasets. The coefficient of determination (R2), adjusted R2 (Adj R2), root-mean squared error (RMSE) and mean absolute percentage error (MAPE) were the indices used for the comparison. The outcomes of the comparison revealed that the proposed ANN and MARS models performed better than the other models with R2 and Adj R2 values above 0.9 and least error values while the M5P gave similar performance to those of the existing models. Weight partitioning method was also used to examine the percentage contribution of model predictors to the predicted BI and tensile strength was found to have the highest influence on the predicted BI.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model (부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법)

  • Cho, Soo Hyun;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.307-332
    • /
    • 2022
  • One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

Prediction of Lung Cancer Based on Serum Biomarkers by Gene Expression Programming Methods

  • Yu, Zhuang;Chen, Xiao-Zheng;Cui, Lian-Hua;Si, Hong-Zong;Lu, Hai-Jiao;Liu, Shi-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9367-9373
    • /
    • 2014
  • In diagnosis of lung cancer, rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important. Serum markers, including lactate dehydrogenase (LDH), C-reactive protein (CRP), carcino-embryonic antigen (CEA), neurone specific enolase (NSE) and Cyfra21-1, are reported to reflect lung cancer characteristics. In this study classification of lung tumors was made based on biomarkers (measured in 120 NSCLC and 60 SCLC patients) by setting up optimal biomarker joint models with a powerful computerized tool - gene expression programming (GEP). GEP is a learning algorithm that combines the advantages of genetic programming (GP) and genetic algorithms (GA). It specifically focuses on relationships between variables in sets of data and then builds models to explain these relationships, and has been successfully used in formula finding and function mining. As a basis for defining a GEP environment for SCLC and NSCLC prediction, three explicit predictive models were constructed. CEA and NSE are requentlyused lung cancer markers in clinical trials, CRP, LDH and Cyfra21-1 have significant meaning in lung cancer, basis on CEA and NSE we set up three GEP models-GEP 1(CEA, NSE, Cyfra21-1), GEP2 (CEA, NSE, LDH), GEP3 (CEA, NSE, CRP). The best classification result of GEP gained when CEA, NSE and Cyfra21-1 were combined: 128 of 135 subjects in the training set and 40 of 45 subjects in the test set were classified correctly, the accuracy rate is 94.8% in training set; on collection of samples for testing, the accuracy rate is 88.9%. With GEP2, the accuracy was significantly decreased by 1.5% and 6.6% in training set and test set, in GEP3 was 0.82% and 4.45% respectively. Serum Cyfra21-1 is a useful and sensitive serum biomarker in discriminating between NSCLC and SCLC. GEP modeling is a promising and excellent tool in diagnosis of lung cancer.

A Method of Assigning Weight Values for Qualitative Attributes in CBR Cost Model (사례기반추론 코스트 모델의 정성변수 속성가중치 산정방법)

  • Lee, Hyun-Soo;Kim, Soo-Young;Park, Moon-Seo;Ji, Sae-Hyun;Seong, Ki-Hoon;Pyeon, Jae-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.1
    • /
    • pp.53-61
    • /
    • 2011
  • For construction projects, the importance of early cost estimates is highly recognized by the project team and sponsoring organization because early cost estimates are frequently a foundation of business decisions as well as a basis for identifying any changes as the project progresses from design to construction. However, it is difficult to accurately estimate construction cost in the early stage of a project due to various uncertainties in construction. To deal with these uncertainties, cost estimates should be made several times over the course of the project. In particular, early cost estimates are essential process for successful project management. For accurate construction cost estimates, it is necessary to compare cost estimates with actual costs based on historical project data. In this context, case-based reasoning (CBR), which is the process of solving new problems based on the solutions of similar past problems, can be considered as an effective method for cost estimating. To obtain this, it is also required to define the attribute similarities and the attribute weights. However, no existing method is capable of determining attribute weights of qualitative variables. Consequently, it has been a well-known barrier of accurate early cost estimates. Using Genetic Algorithms (GA), this research suggests the method of determining the attribute weight of qualitative variables. Based on building project case studies, the proposed methodology was validated.

A Layout Planning Optimization Model for Finishing Work (건축물 마감공사 자재 배치 최적화 모델)

  • Park, Moon-Seo;Yang, Young-Jun;Lee, Hyun-Soo;Han, Sang-Won;Ji, Sae-Hyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.1
    • /
    • pp.43-52
    • /
    • 2011
  • Unnecessary transportation of resources are one of the major causes that adversely affect construction site work productivity. Therefore, layout related studies have been conducted with efforts to develop management technologies and techniques to minimize the resource transportation made at site-level. However, although the necessity for floor-level layout planning studies has been increasing as buildings have become larger and floors have become more complicated, studies to optimize the transportation of materials inside buildings are currently not being actively conducted. Therefore, in this study, a model was developed using genetic algorithms(GA) that will enable the optimization of the locations of finishing materials on the work-floor. With the established model, the arrangement of diverse materials on complicated floors can be planned and the optimized material layout planning derived from the model can minimize the total material transportation time spent by laborers during their working day. In addition, to calculate travel distances between work sites and materials realistically, the concept of actual travel distances was applied. To identify the applicability of the developed model and compare it with existing methodologies and analyze it, the model was applied to actual high-rise residential complexes.