• 제목/요약/키워드: G10 adhesive

검색결과 155건 처리시간 0.033초

Preparation and Characterization of Modified Natural Rubber Applied to Seismic Isolation Damper Rubber

  • Seong-Guk Bae;Woong Kim;Yu mi Yun;Jin Hyok Lee;Jung-Soo Kim
    • Elastomers and Composites
    • /
    • 제58권3호
    • /
    • pp.128-135
    • /
    • 2023
  • To improve the adhesive strength of natural rubber (NR) for a seismic isolation damper, citraconic acid-g-NR (CCA-g-NR) was synthesized via the melt grafting of citraconic acid (CCA) onto NR using an azobisisnomerobutyronitrile (AIBN) initiator. Subsequently, the influence of CCA and AIBN concentrations on the graft ratio G/R (%) and graft efficiency G/E (%) of the CCA-g-NR was investigated. The optimum CCA and AIBN concentrations required to achieve the desired G/R (3.49%) and G/E (49.8%) were found to be 7 phr and 0.13 phr, respectively. Additionally, we studied the influence of CCA-g-NR concentration on the mechanical properties (tensile strength, elongation at break, and modulus at 300%), adhesive strength, and cure characteristics of the rubber compound in the seismic isolation damper. As the concentration of CCA-g-NR increased, the elongation at break and adhesive strength of the compound increased, whereas its tensile strength and modulus at 300% decreased. Moreover, as the concentration increased, the maximum torque decreased and the scorch time was delayed to obtain an optimal vulcanization time.

The effect of silane and universal adhesives on the micro-shear bond strength of current resin-matrix ceramics

  • Sarahneh, Omar;Gunal-Abduljalil, Burcu
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권5호
    • /
    • pp.292-303
    • /
    • 2021
  • PURPOSE. The aim of this in vitro study was to evaluate the effect of silane and universal adhesive applications on the micro-shear bond strength (µSBS) of different resin-matrix ceramics (RMCs). MATERIALS AND METHODS. A total of 120 slides (14 × 12 × 1 mm) were produced from 5 different RMC materials (GC Cerasmart [GC]; Brilliant Crios [BC]; Grandio blocs [GB]; Katana Avencia [KA]; and KZR-CAD HR 2 [KZR]) and sandblasted using 50 ㎛ Al2O3 particles. Each RMC material was divided into six groups according to the surface conditioning (SC) method as follows: control (G1), silane primer (G2), silane-free universal adhesive (G3), silane-containing universal adhesive (G4), silane primer and silane-free universal adhesive (G5), and silane primer and silane-containing universal adhesive (G6). Three cylindric specimens made from resin cement (Bifix QM) were polymerized over the treated surface of each slide (n = 12). After thermal cycling (10000 cycles, 5 - 55℃), µSBS test was performed and failure types were evaluated using a stereomicroscope. Data were analyzed using 2-way ANOVA and Tukey tests (α = .05). RESULTS. µSBS values of specimens were significantly affected by the RMC type and SC protocols (P < .001) except the interaction (P = .119). Except for G2, all SC protocols showed a significant increase in µSBS values (P < .05). For all RMCs, the highest µSBS values were obtained in G4 and G6 groups. CONCLUSION. Only silane application did not affect the µSBS values regardless of the RMC type. Moreover, the application of a separate silane in addition to the universal adhesives did not improve the µSBS values. Silane-containing universal adhesive was found to be the best conditioning method for RMCs.

지방족 폴리우레탄 접착제의 합성과 접착 특성 (Synthesis and Adhesion Properties of Aliphatic Polyurethane Adhesive)

  • 박창무;최성옥;정노희
    • 한국응용과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.461-469
    • /
    • 2010
  • Polyurethane adhesive is used in various fields as flexible packaging materials including a food packaging field. Therefore, the purpose of this study is synthesis of polyurethane adhesive which uses aliphatic isocyanate, and compares with aromatic isocyanate. The isocyanates for this test are toluene-2,4-diisocyanate(TDI), hexamethylene diisocyanate(HDI), 4,4-dicyclohexyl ethane diisocyanate($H_{12}MDI$), and isophorone diisocyanate(IPDI). And, the effect of any other diisocyanate are evaluated by several methods as for curing rate test, accelerate weathering test, and peel strength test. The polyurethane adhesive using curing catalyst and HDI has adhesion strength of about 560 g/15 mm between aluminium foil and nylon, about 1,520 g/15 mm between nylon and CPP. Those parameters are similar to polyurethane adhesive with TDI. Also, in case of curing rate, those are similar to TDI type polyurethane adhesive. Moreover, data of ${\Delta}E$ as color variation by QUV tester is equal to 4.12, as 48% against those of TDI type.

Cohesive Zone Model을 이용한 접착제 물성평가 : 모드 I (Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I)

  • 이찬주;이상곤;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제33권5호
    • /
    • pp.474-481
    • /
    • 2009
  • Fracture models and criteria of adhesive with two parameters, namely $G_C$ and ${\sigma}_{max}$, have been developed to describe the fracture process of adhesive joints. Cohesive zone model(CZM) is a representative two parameter failure criteria approach. In CZM, ${\sigma}_{max}$ is a critical, limiting maximum value of the stress in the damage zone ahead of the crack and is assumed to have some physical significance in adhesive failure. Based on CZM and finite element analysis method, the relationship between fracture load and adhesive properties, as $G_{IC)$ and $({\sigma}_{max})_I$, was investigated in adhesively bonded joint tensile test and T-peel test. The two parameters in tensile mode loading were evaluated by using the relationship. The value of $G_{\IC}$ evaluated by proposed method showed close agreement with analytical solution for tapered double cantilever beam(TDCB) test which proposed in an ASTM standard.

Influence of Manufacturing Environment on Delamination of Mixed Cross Laminated Timber Using Polyurethane Adhesive

  • SONG, Dabin;KIM, Keonho
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권3호
    • /
    • pp.167-178
    • /
    • 2022
  • To investigate the influence of manufacturing environment on bonding performance of mixed cross laminated wood (CLT) using polyurethane (PUR) adhesive, a boiling water soak delamination test according to the temperature and relative humidity was conducted. The 5-ply mixed CLT consisted of Japanese Larch for external and middle layer and yellow poplar for internal layer. The PUR adhesives with different opening times of 10 and 30 minutes were used. The mixed CLT was manufactured according to pressing times of PUR and manufacturing environments of summer and winter. In case of summer environment, the delamination rate of the mixed CLT with pressing time of 4 hours using a PUR adhesive with open time of 10 minutes met the requirements of KS F 2081. In case of winter environment, the delamination rate of the mixed CLT didn't meet the requirements of KS standard. However, it was possible to confirm the effect of improving the adhesive performance by adjusting the pressing time according to the open time of the adhesive under the manufacturing conditions. The delamination rate of CLT with open time 30 minutes PUR, manufactured by indirect moisture supply methods was 11.2% better than direct moisture supply methods. As a result of delamination test in the same condition of relative humidity and adhesive, it was found that the temperature of manufacturing environment influences the adhesive performance.

아크릴계 점착제의 제조 및 점착특성에 관한 연구 (Preparation and Characteristics of Acrylic Pressure-Sensitive Adhesives)

  • 김남석;박근호
    • 한국응용과학기술학회지
    • /
    • 제18권4호
    • /
    • pp.316-324
    • /
    • 2001
  • To prepare an acrylic type pressure-sensitive adhesive, quarternary polymers were synthesized from butyl acrylate (BA), 2-ethyl hexyl acrylate (2-EHA), methyl methacrylate (MMA), and 2-hydroxy ethyl methacrylate (2-HEMA). The quarternary polymers were identified by FT-IR and Molecular weight was measured by Gel Pearmeation Chromatography. Also, viscosity, solid content and peel strength were examined. The peel strength was 160 $g_{f}/25$ mm when the volume ratio of feed monomer to solvent was 1.3:1, and the ratio was relevant to commercial usage. The pot life of adhesive was 30 sec at the 50 m/min of heat treatment rate at, and it indicated that the minimum drying time was 30 sec. In weathering resistance test, peel strength of $160{\sim}180$ $g_{f}/25$ mm after 1000 h, with no residual remains on the adhesive surface.

CFRP/금속간 접합력 강화를 위한 접합공정 연구 (A Study on Bonding Process for Improvement of Adhesion Properties Between CFRP-Metal Dual Materials)

  • 권동준;박성민;박종만;권일준
    • Composites Research
    • /
    • 제30권6호
    • /
    • pp.416-421
    • /
    • 2017
  • CFRP와 금속간의 접합공정이 개선된 구조용 접착제가 제조되었다. 구조용 접착제에 대한 경화시간, 기지재료의 표면상태 그리고 접착제의 양에 따른 최적의 접합공정 조건을 랩쉐어 실험을 통하여 파악하였다. 적합한 접합조건을 확인하기 위해 이종재료간의 접합 파단면 상태를 반사현미경을 이용하여 평가하였다. 이종재료간 접합력 향상을 위해 접착제의 개선뿐만 아니라 CFRP의 표면처리 또한 중요하였다. 구조용 접착제의 경우 180도 조건에 20분의 경화온도 조건이 최적이였으며, CFRP의 표면 처리에 따라 접합특성이 향상됨을 확인하였다. 이종재료 간 접합을 위해 구조용 접착제의 양은 $1.5{\times}10^{-3}g/mm^2$ 조건일 때 최적이었다. 접합공정의 개선 및 최적화를 통해 기존의 접착력 대비 10% 이상의 물성 강화를 나타냄을 확인하였다.

Adhesive Properties of Lactobacillus brevis FSB-1 In Vivo

  • Kim, Seong-Yeong;Shin, Kwang-Soon;Lee, Ho
    • 한국축산식품학회지
    • /
    • 제30권4호
    • /
    • pp.560-567
    • /
    • 2010
  • This study was conducted to evaluate the in vivo gastrointestinal survival and adhesive properties of orally administered Lactobacillus brevis FSB-1. ELISA conducted using polyclonal antibodies specific for L. brevis FSB-1 was able to detect the organism in feces; therefore, we used ELISA to determine the concentration of lactic acid bacteria in feces collected from Wister rats that had been administered $10^{10}$ cells/rat/d orally for 20 d. The mean recovery of L. brevis FSB-1 was approximately $10^{7.22}$ cells/g of wet feces during the oral administration period, and $10^{7.50}$ and $10^{7.46}$ at 8 and 10 d after the end of oral administration, respectively. These results indicate that L. brevis FSB-1 was able to survive in the gastrointestinal tract of rats, and that it had a high adhesive property in rat colons.

Properties of a New Adhesive Composed of Gambir-Sucrose

  • SUCIPTO, Tito;WIDYORINI, Ragil;PRAYITNO, Tibertius Agus;LUKMANDARU, Ganis
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권3호
    • /
    • pp.303-314
    • /
    • 2020
  • Gambir is a non-wood forest product with a potential of being used as wood adhesive, due to about 33% catechin in it. Meanwhile, catechins and sucrose have not been studied as adhesives. Therefore, basic characteristics of gambir-sucrose adhesives were investigated. In this research, adhesives were prepared by dissolving gambir and sucrose in distilled water, at different blending ratios of the gambir/sucrose such as 100/0, 75/25, 50/50, and 25/75 wt%. Furthermore, gas chromatography-mass spectrometry (GC-MS) was employed to determine the gambir chemical compositions, and Fourier transform-infrared (FTIR) spectroscopy was carried out to identify chemical bonds. Particleboards with a target density of 0.8 g/㎤ were then manufactured by hot-pressing for 10 min at 200℃. The internal bond (IB) strength of particleboard was subsequently measured. Based on the GC-MS analysis, 31.11% of catechin was identified. In addition, the viscosity, density, solid content, and gelation time of the adhesives, and insoluble matter content (IMC) in boiling water were 7.30~33.24 mPa.s, 1.2~1.3 g/㎤, 25.56~28.44%, 73~420 min, and 29.75~62.10%, respectively. Adding sucrose to the adhesive was observed to raise the IMC from 49.05 to 62.10%, at 180℃ and 200℃. FT-IR analysis showed that the gambir absorption peaks occurred at approximately 1620 cm-1, assigned to the C=O stretching of 5-hydroxymethylfurfural, which tended to increase with the addition of sucrose. The reaction between gambir and sucrose was observed in the form of the dimethylene ether bridge. The 25/75 wt% gambir-sucrose adhesives and 200℃ hot-pressed temperature resulted in the highest IB strength (0.89 MPa), and met the requirement of JIS A5908-2003 type 18. Consequently, the gambir-sucrose adhesive could be used as a particleboard adhesive.

Interface between calcium silicate cement and adhesive systems according to adhesive families and cement maturation

  • Nelly Pradelle-Plasse;Caroline Mocquot;Katherine Semennikova;Pierre Colon;Brigitte Grosgogeat
    • Restorative Dentistry and Endodontics
    • /
    • 제46권1호
    • /
    • pp.3.1-3.14
    • /
    • 2021
  • Objectives: This study aimed to evaluate the interface between a calcium silicate cement (CSC), Biodentine and dental adhesives in terms of sealing ability. Materials and Methods: Microleakage test: 160 standardized class II cavities were prepared on 80 extracted human molars. The cavities were filled with Biodentine and then divided into 2 experimental groups according to the time of restoration: composite resin obturation 15 minutes after Biodentine handling (D0); restoration after 7 days (D7). Each group was then divided into 8 subgroups (n = 5) according to the adhesive system used: etch-and-rinse adhesive (Prime & Bond); self-etch adhesive 2 steps (Optibond XTR and Clearfil SE Bond); self-etch adhesive 1 step (Xeno III, G-aenial Bond, and Clearfil Tri-S Bond); and universal used as etch-and-rinse or self-etch (ScotchBond Universal ER or SE). After thermocycling, the teeth were immersed in a silver nitrate solution, stained, longitudinally sectioned, and the Biodentine/adhesive percolation was quantified. Scanning electron microscopic observations: Biodentine/adhesive interfaces were observed. Results: A tendency towards less microleakage was observed when Biodentine was etched (2.47%) and when restorations were done without delay (D0: 4.31%, D7: 6.78%), but this was not significant. The adhesives containing 10-methacryloyloxydecyl dihydrogen phosphate monomer showed the most stable results at both times studied. All Biodentine/adhesive interfaces were homogeneous and regular. Conclusions: The good sealing of the CSC/adhesive interface is not a function of the system adhesive family used or the cement maturation before restoration. Biodentine can be used as a dentine substitute.