• 제목/요약/키워드: G-invariant hypersurface

검색결과 17건 처리시간 0.02초

A THEOREM OF G-INVARIANT MINIMAL HYPERSURFACES WITH CONSTANT SCALAR CURVATURES IN Sn+1

  • So, Jae-Up
    • 호남수학학술지
    • /
    • 제31권3호
    • /
    • pp.381-398
    • /
    • 2009
  • Let $G\;=\;O(k){\times}O(k){\times}O(q)$ and let $M^n$ be a closed G-invariant minimal hypersurface with constant scalar curvature in $S^{n+1}$. Then we obtain a theorem: If $M^n$ has 2 distinct principal curvatures at some point p, then the square norm of the second fundamental form of $M^n$, S = n.

NON-INVARIANT HYPERSURFACES OF A (𝜖, 𝛿)-TRANS SASAKIAN MANIFOLDS

  • Khan, Toukeer;Rizvi, Sheeba
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권5호
    • /
    • pp.985-994
    • /
    • 2021
  • The object of this paper is to study non-invariant hypersurface of a (𝜖, 𝛿)-trans Sasakian manifolds equipped with (f, g, u, v, λ)-structure. Some properties obeyed by this structure are obtained. The necessary and sufficient conditions also have been obtained for totally umbilical non-invariant hypersurface with (f, g, u, v, λ)-structure of a (𝜖, 𝛿)-trans Sasakian manifolds to be totally geodesic. The second fundamental form of a non-invariant hypersurface of a (𝜖, 𝛿)-trans Sasakian manifolds with (f, g, u, v, λ)-structure has been traced under the condition when f is parallel.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM IN TERMS OF THE STRUCTURE JACOBI OPERATOR

  • Ki, U-Hang;Kurihara, Hiroyuki
    • 대한수학회논문집
    • /
    • 제37권1호
    • /
    • pp.229-257
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c), c ≠ 0. We denote by A and R𝜉 the shape operator in the direction of distinguished normal vector field and the structure Jacobi operator with respect to the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(< 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉A = AR𝜉 and at the same time ∇𝜉R𝜉 = 0 on M, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING 𝔏ξ∇ = 0 IN A NONFLAT COMPLEX SPACE FORM

  • AHN, SEONG-SOO;LEE, SEONG-BAEK;LEE, AN-AYE
    • 호남수학학술지
    • /
    • 제23권1호
    • /
    • pp.133-143
    • /
    • 2001
  • In this paper, we characterize some semi-invariant submanifolds of codimension 3 with almost contact metric structure (${\phi}$, ${\xi}$, g) satisfying 𝔏ξ∇ = 0 in a nonflat complex space form, where ${\nabla}$ denotes the Riemannian connection induced on the submanifold, and 𝔏ξ is the operator of the Lie derivative with respect to the structure vector field ${\xi}$.

  • PDF

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 OF A COMPLEX PROJECTIVE SPACE IN TERMS OF THE JACOBI OPERATOR

  • HER, JONG-IM;KI, U-HANG;LEE, SEONG-BAEK
    • 대한수학회보
    • /
    • 제42권1호
    • /
    • pp.93-119
    • /
    • 2005
  • In this paper, we characterize some semi-invariant sub-manifolds of codimension 3 with almost contact metric structure ($\phi$, $\xi$, g) in a complex projective space $CP^{n+1}$ in terms of the structure tensor $\phi$, the Ricci tensor S and the Jacobi operator $R_\xi$ with respect to the structure vector $\xi$.

SEMI-INVARIANT MINIMAL SUBMANIFOLDS OF CONDIMENSION 3 IN A COMPLEX SPACE FORM

  • Lee, Seong-Cheol;Han, Seung-Gook;Ki, U-Hang
    • 대한수학회논문집
    • /
    • 제15권4호
    • /
    • pp.649-668
    • /
    • 2000
  • In this paper we prove the following : Let M be a real (2n-1)-dimensional compact minimal semi-invariant submanifold in a complex projective space P(sub)n+1C. If the scalar curvature $\geq$2(n-1)(2n+1), then m is a homogeneous type $A_1$ or $A_2$. Next suppose that the third fundamental form n satisfies dn = 2$\theta\omega$ for a certain scalar $\theta$$\neq$c/2 and $\theta$$\neq$c/4 (4n-1)/(2n-1), where $\omega$(X,Y) = g(X,øY) for any vectors X and Y on a semi-invariant submanifold of codimension 3 in a complex space form M(sub)n+1 (c). Then we prove that M has constant principal curvatures corresponding the shape operator in the direction of the distingusihed normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous minimal real hypersurface of M(sub)n (c).

  • PDF