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Abstract. Let G = O(2)×O(2)×O(2). Then a closed G-invariant minimal hypersurface

with constant scalar curvature in S5 is a product of spheres, i.e., the square norm of its

second fundamental form, S = 4.

1. Introduction

Let Mn be a closed minimally immersed hypersurface in the unit sphere Sn+1,
and h its second fundamental form. Denote by R and S its scalar curvature and
the square norm of h, respectively. It is well known that S = n(n− 1)−R from the
structure equations of both Mn and Sn+1. In particular, S is constant if and only
if M has constant scalar curvature. In 1968, J. Simons [6] observed that if S ≤ n
everywhere and S is constant, then S ∈ {0, n}. Clearly, Mn is an equatorial sphere
if S = 0. And when S = n, Mn is indeed a product of spheres, due to the works of
Chern, do Carmo, and Kobayashi [2] and Lawson [4].

We are concerned about the following conjecture posed by Chern [9].

Chern Conjecture. For any n ≥ 3, the set Rn of the real numbers each of which
can be realized as the constant scalar curvature of a closed minimally immersed
hypersurface in Sn+1 is discrete.

C. K. Peng and C. L. Terng [5] proved

Theorem(Peng and Terng, 1983). Let Mn be a closed minimally immersed hyper-
surface with constant scalar curvature in Sn+1. If S > n, then S > n + 1/(12n).

S. Chang [1] proved the following theorem by showing that S = 3 if S ≥ 3 and
M3 has multiple principal curvatures at some point.

Theorem(Chang, 1993). A closed minimally immersed hypersurface with constant
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scalar curvature in S4 is either an equatorial 3-sphere, a product of spheres, or a
Cartan’s minimal hypersurface. In particular, R3 = {0, 3, 6}.

H. Yang and Q. M. Cheng [8] proved

Theorem(Yang and Cheng, 1998). Let Mn be a closed minimally immersed hy-
persurface with constant scalar curvature in Sn+1. If S > n, then S ≥ n + n/3.

Let G ≃ O(k) × O(k) × O(q) ⊂ O(2k + q) and set 2k + q = n + 2. Then W.
Y. Hsiang [3] investigated G-invariant, minimal hypersurfaces, Mn in Sn+1, by
studying their generating curves, Mn/G, in the orbit space Sn+1/G. He showed
that there exit infinitely many closed minimal hypersurfaces in Sn+1 for all n ≥ 2,
by proving the following theorem:

Theorem(Hsiang, 1987). For each dimension n ≥ 2, there exist infinitely many,
mutually noncongruent closed G-invariant minimal hypersurfaces in Sn+1, where
G ≃ O(k)×O(k)×O(q) and k = 2 or 3.

We studied G-invariant minimal hypersurfaces, in stead of minimal ones, with
constant scalar curvatures in S5. In this paper, we shall prove the following classi-
fication theorem:

Our Theorem. A closed G-invariant minimal hypersurface with constant scalar
curvature in S5 is a product of spheres, i.e., S = 4, where G = O(2)×O(2)×O(2).

Let M4 be a closed G-invariant minimal hypersurface with constant scalar cur-
vature in S5. By virtue of the results of Simons [6], we see that if S ≤ 4, then
S ∈ {0, 4}. In Lemma 4.3, we show that if M4 has 2 distinct principal curvatures
at some point, then S = 4. Since any equatorial sphere is not G−invariant, we see
that if S ≤ 4 then S = 4. Moreover, Lemma 4.3 says that if S > 4, then M4 does
not have 2 distinct principal curvatures anywhere. Therefore, if S > 4 then M4

must have simple principal curvatures everywhere or 3 distinct principal curvatures
at some point. To prove our Theorem, we need only to show that it is impossible.
In Lemma 5.1 and Lemma 5.2, we show that if S > 4 then M4 does not have sim-
ple principal curvatures everywhere and 3 distinct principal curvatures anywhere,
respectively.

2. Preliminary Results

LetMn be a manifold of dimension n immersed in a Riemannian manifoldM
n+1

of dimension n+1. Let ∇ and ⟨ , ⟩ be the connection and metric tensor respectively

of M
n+1

and let R̄ be the curvature tensor with respect to the connection ∇ on

M
n+1

. Choose a local orthonormal frame field e1, . . . , en+1 in M
n+1

such that after
restriction to Mn, the e1, . . . , en are tangent to Mn. Denote the dual coframe by
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{ωA}. Here we will always use i, j, k, . . . , for indices running over {1, 2, . . . , n} and
A,B,C, . . . , over {1, 2, . . . , n+ 1}.

As usual, the second fundamental form h and the mean curvature H of Mn in

M
n+1

are respectively defined by

h(v, w) = ⟨∇vw, en+1⟩ and H =
∑
i

h(ei, ei).

Mn is said to be minimal if H vanishes identically. And the scalar curvature R̄ of

M
n+1

is defined by

R̄ =
∑
A,B

⟨R̄(eA, eB)eB , eA⟩.

Then the structure equations of M
n+1

are given by

dωA =
∑
B

ωAB ∧ ωB , ωAB + ωBA = 0,

d ωAB =
∑
C

ωAC ∧ ωCB − 1

2

∑
C,D

KABCD ωC ∧ ωD,

where KABCD = ⟨R̄(eA, eB)eD, eC⟩. When M
n+1

is the unit sphere Sn+1, we have

KABCD = δAC δBD − δAD δBC .

Next, we restrict all tensors to Mn. First of all, ωn+1 = 0 on Mn. Then∑
i

ω(n+1)i ∧ ωi = dωn+1 = 0.

By Cartan’s lemma, we can write

ω(n+1)i = −
∑
j

hij ωj .

Here, we see

hij = −ω(n+1)i(ej) = −⟨∇ejen+1, ei⟩ = ⟨∇ejei, en+1⟩ = ⟨∇eiej , en+1⟩(2.1)

= h(ei, ej).

Second, from 
dωi =

∑
j

ωij ∧ ωj , ωij + ωji = 0,

d ωij =
∑
l

ωil ∧ ωlj −
1

2

∑
l,m

Rijlm ωl ∧ ωm,
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we find the curvature tensor of Mn is

Rijlm = Kijlm + hil hjm − him hjl.(2.2)

Therefore, if Mn is a piece of minimally immersed hypersurface in the unit
sphere Sn+1 and R is the scalar curvature of Mn, then we have

R = n(n− 1)− S,(2.3)

where S =
∑

i,j h
2
ij is the square norm of h.

Given a symmetric 2-tensor T =
∑

i,j Tij ωi ωj on Mn, we also define its covari-

ant derivatives, denoted by ∇T ,∇2T and ∇3T , etc. with components Tij,k, Tij,kl

and Tij,klp , respectively, as follows:

∑
k

Tij,k ωk = d Tij +
∑
s

Tsj ωsi +
∑
s

Tis ωsj ,

(2.4)

∑
l

Tij,kl ωl = d Tij,k +
∑
s

Tsj,k ωsi +
∑
s

Tis,k ωsj +
∑
s

Tij,s ωsk,∑
p

Tij,klp ωp = d Tij,kl +
∑
s

Tsj,kl ωsi +
∑
s

Tis,kl ωsj +
∑
s

Tij,sl ωsk +
∑
s

Tij,ks ωsl.

In general, the resulting tensors are no longer symmetric, and the rule to switch
sub-index obeys the Ricci formula as follows:

Tij,kl − Tij,lk =
∑
s

Tsj Rsikl +
∑
s

Tis Rsjkl,(2.5)

Tij,klp − Tij,kpl =
∑
s

Tsj,k Rsilp +
∑
s

Tis,k Rsjlp +
∑
s

Tij,s Rsklp,

Tij,klpm − Tij,klmp =
∑
s

Tsj,kl Rsipm

+
∑
s

Tis,kl Rsjpm +
∑
s

Tij,sl Rskpm +
∑
s

Tij,ks Rslpm.

For the sake of simplicity, we always omit the comma ( , ) between indices in

the special case T =
∑

i,j hij ωi ωj with M
n+1

= Sn+1. Since∑
C,D

K(n+1)iCD ωC ∧ ωD = 0

on Mn when M
n+1

= Sn+1, we find

d

∑
j

hij ωj

 =
∑
j,l

hjl ωl ∧ ωji.
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Therefore,

∑
j,l

hijl ωl ∧ ωj =
∑
j

(
dhij +

∑
l

hlj ωli +
∑
l

hil ωlj

)
∧ ωj = 0;

i.e., hijl is symmetric in all indices.
In the case that Mn is minimal, by differentiating

∑
l hll = 0 we have

0 = ej ei

(∑
l

hll

)
=
∑
l

ej(hlli) =
∑
l

hllij(2.6)

and so,

∑
l

hijll =
∑
l

hlijl =
∑
l

{
hlilj +

∑
m

(hmiRmljl + hlmRmijl)

}(2.7)

= (n− 1)hij +
∑
l,m

{−hmihmlhlj + hlm(δmjδil − δmlδij + hmjhil − hmlhij)}

= nhij −
∑
l,m

hlmhmlhij = (n− S)hij .

It follows that

1

2
∆S = (n− S)S +

∑
i,j,l

h2
ijl.(2.8)

In the case that S is constant, by differentiating S =
∑

i,j h
2
ij twice , we have

0 =
∑
i,j

hijhijkl +
∑
i,j

hijk hijl.(2.9)

3. G-invariant Hypersurface in Sn+1

ForG ≃ O(k)×O(k)×O(q), Rn+2 splits into the orthogonal direct sum of irreducible
invariant subspaces, namely

Rn+2 ≃ Rk ⊕Rk ⊕Rq = {(X,Y, Z)}

where X and Y are generic k-vectors and Z is a generic q-vector. Here if we set
x = |X|, y = |Y | and z = |Z|, then the orbit space Rn+2/G can be parametrized
by (x, y, z); x, y, z ∈ R+ and the orbital distance metric is given by ds2 = dx2 +
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dy2 + dz2. By restricting the above G-action to the unit sphere Sn+1 ⊂ Rn+2, it is
easy to see that

Sn+1/G ≃ {(x, y, z) : x2 + y2 + z2 = 1; x, y, z ≥ 0}

which is isometric to a spherical triangle of S2(1) with π/2 as its three angles. The
orbit labeled by (x, y, z) is exactly Sk−1(x)× Sk−1(y)× Sq−1(z).

In this section, Mn is a closed G- invariant hypersurface in Sn+1. ∇ and
∇ are the Riemannian connections of Mn and Sn+1, respectively. To investigate
those G-invariant minimal hypersurfaces, we study their generating curves, γ(s) =
(x(s), y(s), z(s)) = Mn/G, in the orbit space Sn+1/G.

Let us start with the following two lemmas which play very important roles in
proving our Theorem.

Lemma 3.1. Let Mn be a G-invariant hypersurface in Sn+1. Then there is a local
orthonormal frame field e1, . . . , en+1 on Sn+1 such that after restriction to Mn, the
e1, . . . , en are tangent to Mn and hij = 0 if i ̸= j.

Proof. Let (X0, Y0, Z0) ∈ Mn ⊂ Sn+1 with x = |X0|, y = |Y0| and z = |Z0| and
choose a local orthonormal frame field on a neighborhood of (X0, Y0, Z0) as follows.

First, we choose vector fields ũ1, . . . , ũk−1, ṽ1, . . . , ṽk−1, w̃1, . . . , w̃q−1 on a
neighborhood U of (X0, Y0, Z0) in the orbit Sk−1(x) × Sk−1(y) × Sq−1(z) such
that:

(1) ũ1, . . . , ũk−1 are lifts of orthonormal tangent vector fields u1, . . . , uk−1 on

a neighborhood of X0 in Sk−1(x) to Sk−1(x)× Sk−1(y)× Sq−1(z) respectively,

(2) ṽ1, . . . , ṽk−1 are lifts of orthonormal tangent vector fields v1, . . . , vk−1 on

a neighborhood of Y0 in Sk−1(y) to Sk−1(x)× Sk−1(y)× Sq−1(z) respectively,

(3) w̃1, . . . , w̃q−1 are lifts of orthonormal tangent vector fields w1, . . . , wq−1 on

a neighborhood of Z0 in Sq−1(z) to Sk−1(x)× Sk−1(y)× Sq−1(z) respectively.

Second, let N(s) = (n1(s), n2(s), n3(s)) be a local unit normal vector field on γ
in Sn+1/G. For each p = (X,Y, Z) ∈ U , let γ̃(p, s) be the lift curve of γ(s) in Sn+1

through p. and let Ñ(p, s) be the lift vector field of N(s) on γ̃(p, s). Then we know

γ̃(p, s) = (X(s), Y (s), Z(s)) =

(
x(s)

X

x
, y(s)

Y

y
, z(s)

Z

z

)
(3.1)

and so,

γ̃′(p, s) =

(
x′(s)

X

x
, y′(s)

Y

y
, z′(s)

Z

z

)
(3.2)
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and

Ñ(p, s) =

(
n1(s)

X(s)

x(s)
, n2(s)

Y (s)

y(s)
, n3(s)

Z(s)

z(s)

)
.(3.3)

The two orthonormal vector fields γ̃′ and Ñ are defined on a neighborhood in Mn.
Third, let us extend ũ1, . . . , ũk−1, ṽ1, . . . , ṽk−1, w̃1, . . . , w̃q−1 over a neighbor-

hood in M as follows:
Let ᾱi(u) = (αi(u), Y, Z) be a curve in Sk−1(x) × Sk−1(y) × Sq−1(z) through

p = (X,Y, Z) such that ᾱi(0) = p and ᾱ′
i(0) = (α′

i(0), 0, 0) = ũi(p). From (2.1),

¯̄αi(u) =

(
x(s)

αi(u)

x
, y(s)

Y

y
, z(s)

Z

z

)
is a a curve in the orbit Sk−1(x(s))× Sk−1(y(s))× Sq−1(z(s)) through γ̃(p, s) and

¯̄α′
i(0) =

x(s)

x
(α′

i(0), 0, 0) ( : parallel to ũi(p) in the Euclidean space)

is tangent to the orbit Sk−1(x(s)) × Sk−1(y(s)) × Sq−1(z(s)) and so, to Mn. It
says that the vector field obtained by Euclidean parallel translation of ũi along γ̃ is
tangent to Mn. Hence,

extend ũ1, . . . , ũk−1, ṽ1, . . . , ṽk−1, w̃1, . . . , w̃q−1 over a neighborhood in M(∗)
by Euclidean parallel translation along γ̃.

Then these vector fields ũ1, . . . , ũk−1, ṽ1, . . . , ṽk−1, w̃1, . . . , w̃q−1, γ̃
′, Ñ is a local or-

thonormal frame field on Mn and ũ1, . . . , ũk−1, ṽ1, . . . , ṽk−1, w̃1, . . . , w̃q−1, γ̃
′ are

tangent to Mn.
Last, let us extend ũ1, . . . , ũk−1, ṽ1, . . . , ṽk−1, w̃1, . . . , w̃q−1, γ̃

′, Ñ over a neigh-
borhood in Sn+1 as follows:

From (2.1), we have

(3.4) hij = ⟨∇ũi
ũj , Ñ ⟩ = −

⟨
ũj , ∇ũi

Ñ
⟩
.

Here, ∇ũi
Ñ depends only the values of Ñ along any smooth curve ᾱi such that

ᾱ′
i = ũi. Since Ñ is already defined on a neighborhood in Mn and ũi is a tangent

vector field on the neighborhood in Mn, ∇ũi
Ñ does not depend on the choice of

extending Ñ . Hence,

extend all vector fields over a neighborhood in Sn+1 properly.(∗∗)

The extended vector fields ũ1, . . . , ũk−1, ṽ1, . . . , ṽk−1, w̃1, . . . , w̃q−1, γ̃
′, Ñ is a

local orthonormal frame field on Sn+1. After restriction these vector fields to Mn,
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ũ1, . . . , ũk−1, ṽ1, . . . , ṽk−1, w̃1, . . . , w̃q−1, γ̃
′ are tangent to Mn. For convenience, we

write them as e1, . . . , en+1 in order.
Now, let us compute hij(p). From (3.2) and (3.3), we have

(3.5)


γ̃′(ᾱi(u), 0) =

(
x′(0)

αi(u)

x
, y′(0)

Y

y
, z′(0)

Z

z

)
,

Ñ(ᾱi(u), 0) =

(
n1(0)

αi(u)

x
, n2(0)

Y

y
, n3(0)

Z

z

)
.

If ∇∗ is the Riemannian connection of Rn+2, then ∇ = ∇∗⊤. Hence, (3.5)
implies

(3.6)


∇ũi(p)γ̃

′ =

{
x′(0)

x
(α′

i(0), 0, 0)

}⊤

=

{
x′(0)

x
ũi(p)

}⊤

=
x′(0)

x
ũi(p),

∇ũi(p)Ñ =

{
n1(0)

x
(α′

i(0), 0, 0)

}⊤

=

{
n1(0)

x
ũi(p)

}⊤

=
n1(0)

x
ũi(p).

Thus, from (3.4) and (3.6) we have at p

hij = −⟨ ũj(p), ∇ũi(p)Ñ ⟩ = −
⟨
ũj(p),

n1(0)

x
ũi(p)

⟩
= −n1(0)

x
δij .(3.7)

Similarly, we have at p

(3.8)


h(k−1+i)(k−1+j) = ⟨∇ṽi(p)ṽj , Ñ ⟩ = −n2(0)

y
δij ,

h(2k−2+i)(2k−2+j) = ⟨∇w̃i(p)w̃j , Ñ ⟩ = −n3(0)

z
δij .

And since ∇γ′γ′ = (x′′(0), y′′(0), z′′(0))⊤ on Sn+1/G, we have at p

hnn = ⟨∇γ̃′ γ̃′, Ñ ⟩(3.9)

= ⟨ (x′′(0)
X

x
, y′′(0)

Y

y
, z′′(0)

Z

z
)⊤, (n1(0)

X

x
, n2(0)

Y

y
, n3(0)

Z

z
) ⟩

= x′′(0)n1(0) + y′′(0)n2(0) + z′′(0)n3(0)

= ⟨ (x′′(0), y′′(0), z′′(0)), N ⟩
= ⟨∇γ′γ′, N ⟩ = κg(γ),

where κg(γ) is the geodesic curvature of γ at (x, y, z). Recall that

γ(s) = (sin r(s) cos θ(s), sin r(s) sin θ(s), cos r(s)) = (x(s), y(s), z(s)).(3.10)

Let (x, y, z) = γ(0) = (sin r cos θ, sin r sin θ, cos r). Then

γ′(0) =
dr

ds

∂

∂r
+

dθ

ds

∂

∂θ
,
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where ∂/∂r = (cos r cos θ, cos r sin θ,− sin r) and ∂/∂θ = sin r(− sin θ, cos θ, 0).
Now, let U = (∂/∂r)× 1/ sin r (∂/∂θ) be a unit normal vector field on a neigh-

borhood of (x, y, z) in Sn+1/G. Then we have

N(0) = (n1(0), n2(0), n3(0))

(3.11)

= U × T = U × γ′(0) = U ×
(
dr

ds

∂

∂r
+

dθ

ds

∂

∂θ

)
=

1

sin r

dr

ds

∂

∂θ
− sin r

dθ

ds

∂

∂r

= − sin r
dθ

ds
(cos r cos θ,− sin r cos r sin θ,− sin r) +

dr

ds
(− sin θ, cos θ, 0).

Therefore, from (3.7), (3.8), (3.9), (3.10) and (3.11) we obtain

(3.12)



h11 = · · · = h(k−1)(k−1) = −n1(0)

x
= cos r

dθ

ds
+

tan θ

sin r

dr

ds
,

hkk = · · · = h(2k−2)(2k−2) = −n2(0)

y
= cos r

dθ

ds
− cot θ

sin r

dr

ds
,

h(2k−1)(2k−1) = · · · = h(n−1)(n−1) = −n3(0)

z
= − sin2 r

cos r

dθ

ds
,

hnn = κg(γ),

hij = 0 if i ̸= j,

which completes the proof of Lemma 3.1. 2

Note. In Lemma 3.1, those all hii’s are called the principal curvatures of Mn.
All principal curvatures hii’s are constant on each orbit from (3.12) and the vector
fields e1, · · · , en−1 are tangent to each orbit from (∗) of Lemma 3.1. Hence we have

ej(h11) = · · · = ej(hnn) = 0, for all j = 1, · · · , n− 1.(3.13)

From now on throughout this paper, {eA} is a local orthonormal frame field on
Sn+1 such as the frame field in Lemma 3.1.

Lemma 3.2. Let Mn be a G-invariant hypersurface in Sn+1. Then,
(1) all hijl = 0 except when {i, j, l} is a permutation of {i, i, n},
(2) all hijlm = 0 except when {i, j, l,m} is a permutation of {i, i, j, j}.

Proof. (1) Since hijl is symmetric in all indices, it suffices to show that hijl = 0 if
i ≤ j ≤ l and {i, j, l} ≠ {i, i, n}.

(1.a) Case 1. j ̸= i : (2.4) together with Lemma 3.1 gives

hijl = el(hij) +
∑
s

hsj ωsi(el) +
∑
s

his ωsj(el) = (hjj − hii)ωji(el).(3.14)
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If i, j ≤ k − 1, then from (3.12) hii = hjj . Hence, (3.14) implies hijl = 0 for all
l.

If k ≤ i, j ≤ 2k − 2 or 2k − 1 ≤ i, j ≤ n− 1, then also hijl = 0 for all l.

And, if i ≤ k − 1 and k ≤ j < n, then for all l (i � j ≤ l) we have

hijl = hlij = ej(hli) + (hii − hll)ωil(ej) = (hii − hll)⟨∇ejei, el⟩ = 0,(3.15)

since ∇ejei = 0 by the Koszul formula. In the similar cases, we also have hijl = 0.

Now, from (2.4) and Lemma 3.1, we have

hmml = el(hmm) +
∑
s

hsm ωsm(el) +
∑
s

hms ωsm(el) = el(hmm).(3.16)

Hence, if j = l = n, then hinn = hnni = ei(hnn) = 0 from (3.13) since i < j(= n) .

(1.b) Case 2. j = i and l ̸= n : hijl = hiil = el(hii) = 0 from (3.13).

Therefore, (1.a) and (1.b) imply that (1) holds.

(2) (2.a) Case 1. i, j, l,m are distinct : Without loss of generality, it suffices
to show that hijln = hijnl = 0 and hijlm = 0 for all i, j, l, m such that i, j, l, m <
n.

By using (1) of this Lemma, we easily see that

hijln = en(hijl) +
∑
s

hsjl ωsi(en) +
∑
s

hisl ωsj(en) +
∑
s

hijs ωsl(en) = 0,

(3.17)

since i, j, l < n and i, j, l are distinct. And, from (2.5) and Lemma 3.1 we have

hijnl = hijln +
∑
s

hsj Rsinl +
∑
s

his Rsjnl = hjj Rjinl + hii Rijnl = 0.(3.18)

If i, j, l, m < n, then from (1) of this Lemma we can easily see

hijlm = em(hijl) +
∑
s

{hsjl ωsj(em) + hisl ωsj(em) + hijs ωsl(em)} = 0.(3.19)

From (3.17), (3.18) and (3.19), we complete the proof of (2.a)

(2.b) Case 2. j ̸= l : Let us show that hiijl = hjlii = hjjjl = hljjj = 0.

First, we show that hiijl = hjlii = 0. Since j ̸= l, one of {j, l} is not n. And

hiijl = hiilj +
∑
s

hsi Rsijl +
∑
s

his Rsijl = hiilj + 2hiiRiijl = hiilj .(3.20)
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Hence, we may assume l ̸= n. So, el(hiij) = 0. Because hiij = ej(hii) is also
constant on each orbit since hii is constant on each orbit. Therefore, we have

hiijl = el(hiij) +
∑
s

hsij ωsi(el) +
∑
s

hisj ωsi(el) +
∑
s

hiis ωsj(el)(i)

= 2hjij ωji(el)− hiin ωnj(el) = 0,

since hjij = 0 if i ̸= n and ωnj(el) = ⟨∇elen, ej ⟩ = 0 from the first of (3.6).
And since j ̸= l, from (2.5), Lemma 3.1 and (i) we also have

hjlii = hijli = hijil +
∑
s

hsj Rsili +
∑
s

his Rsjli(ii)

= hiijl + hjj Rjili + hii Rijli = 0.

Second, we show that hjjjl = hljjj = 0. From (2.4), we have

hjjjl = el(hjjj) +
∑
s

hsjj ωsj(el) +
∑
s

hjsj ωsj(el) +
∑
s

hjjs ωsj(el).(3.21)

Hence, (3.21) and (1) of this Lemma give

(3.22) hjjjl =

{
3hjjn ωnj(el) if j ̸= n,

el(hnnn) if j = n.

Here,

(3.23)

ωnj(el) =

{
⟨∇elen, ej⟩ = 0 from (3.6) if l ̸= n,

−⟨en,∇enej⟩ = 0 from (*) in Lemma 3.1 if l = n,

el(hnnn) = 0 since hnnn is also constant on each orbit ( l ̸= j = n).

From (3.21), (3.22) and (3.23), we have

hjjjl = 0(iii)

and

hljjj = hjjlj = hjjjl +
∑
s

hsj Rsjlj +
∑
s

hjs Rsjlj = hjjjl + 2hjj Rjjlj = 0.(iiii)

From (i), (ii), (iii) and (iiii), we complete the proof of (2.b) and Lemma 3.2. 2

4. G-invariant Minimal Hypersurface in S5.

From now on, we assume that G ≃ O(2) × O(2) × O(2) and M4 is a closed
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G-invariant minimal hypersurface with constant scalar curvature in S5. Then by
differentiating

∑
i hii = 0 and

∑
i h

2
ii = S with respect to e4 respectively, we have

(4.1)

{
h114 + h224 + h334 + h444 = 0,

h11h114 + h22h224 + h33h334 + h44h444 = 0.

By differentiating (4.1) with respect to e4 respectively, we have

(4.2)

{
h1144 + h2244 + h3344 + h4444 = 0,∑

i hiihii44 +
∑

i h
2
ii4 = 0.

Since e4(hii44) = hii444 from (2.4), by differentiating (4.2) with respect to e4
respectively, we also have

(4.3)

{
h11444 + h22444 + h33444 + h44444 = 0,∑

i hiihii444 + 3
∑

i hii4hii44 = 0.

From (2.7), we have

hii11 + hii22 + hii33 + hii44 = (4− S)hii.(4.4)

Since S is constant, (2.8) and Lemma 3.2 give

3
∑
i ̸=4

h2
ii4 + h2

444 = S(S − 4).(4.5)

Now, by differentiating it once and twice with respect to e4 respectively, we have

(4.6)

{
3
∑

i̸=4 hii4 hii44 + h444 h4444 = 0,

3
∑

i̸=4 hii4 hii444 + h444 h44444 + 3
∑

i ̸=4 h
2
ii44 + h2

4444 = 0.

Moreover, if i ̸= 4, from (2.4) we know

(4.7)


hii4 = hi4i = (h44 − hii)ω4i(ei),

hiiii = 3hii4 ω4i(ei),

h44ii = (h444 − 2hii4)ω4i(ei).

And, if i, j ̸= 4 and i ̸= j, then

hiijj = ej(hiij) +
∑
s

{hsijωsi(ej) + hisjωsi(ej) + hiisωsj(ej)} = hii4 ω4j(ej).

(4.8)

The following (4.9), (4.10) and (4.11) are needed to prove Lemma 4.1.
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If i ̸= 4, then (2.4) and Lemma 3.2 give

(4.9)


e4(h44ii) = h44ii4 −

∑
s{hs4iiωs4(e4) + h4siiωs4(e4)

+h44siωsi(e4) + h44isωsi(e4)} = h44ii4,

h444ii = ei(h444i) +
∑

s{hs44iωs4(ei) + h4s4iωs4(ei)

+h44siωs4(ei) + h444sωsi(ei)} = (h4444 − 3h44ii)ω4i(ei).

Furthermore, if i ̸= 4, then (2.2) and (2.5), (4.7) give

(4.10)


Ri4i4 = Ki4i4 + hiih44 = 1 + hiih44 = −R4ii4,

(h44ii − hii44)ω4i(ei) = (h44 − hii)(1 + h44hii)ω4i(ei)

= hii4(1 + h44hii),

respectively. Here h44i4 = h444i = 0 by Lemma 3.2. And so (2.5) and (4.10) give

(4.11)

h44i4i = ei(h44i4) + hi4i4 ωi4(ei) + h4ii4 ωi4(ei) + h4444 ω4i(ei) + h44ii ωi4(ei)

= ei(h444i)− hii44 ω4i(ei)− hii44 ω4i(ei) + h4444 ω4i(ei) + h44ii ωi4(ei)

= h444ii − hi44i ωi4(ei)− h4i4i ωi4(ei)− h44ii ωi4(ei)− h4444 ω4i(ei)

− hii44 ω4i(ei)− hii44 ω4i(ei) + h4444 ω4i(ei) + h44ii ωi4(ei)

= h444ii + 2(h44ii − hii44)ω4i(ei)

= h444ii + 2hii4(1 + h44hii).

Hence, we have the following lemma that is needed to prove our Theorem.

Lemma 4.1. If i ̸= 4, then

hii444 = h444ii + (5 + 6hiih44 − h2
44)hii4 − (2 + 3hiih44 − h2

ii)h444.(4.12)

Proof. By using (4.9), (4.10) and (4.11), we have

hii444 = e4(hii44) +
∑
s

{hsi44ωsi(e4) + his44ωsi(e4) + hiis4ωs4(e4) + hii4sωs4(e4)}

= e4(hii44)

= e4{h44ii + (hii − h44)(1 + hiih44)}
= h44ii4 + (hii4 − h444)(1 + hiih44) + (hii − h44)(hii4h44 + hiih444)

= h44i4i + hi4iRi4i4 + h4iiRi4i4 + h444R4ii4

+ (hii4 − h444)(1 + hiih44) + (hii − h44)(hii4h44 + hiih444)

= h444ii + 2hii4(1 + h44hii) + (2hii4 − h444)Ri4i4

+ (hii4 − h444)(1 + hiih44) + (hii − h44)(hii4h44 + hiih444)

= h444ii + (5hii4 − 2h444)(1 + hiih44) + (hiih44 − h2
44)hii4 + (h2

ii − hiih44)h444

= h444ii + (5 + 6hiih44 − h2
44)hii4 − (2 + 3hiih44 − h2

ii)h444
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and it completes the proof of Lemma 4.1. 2

For the sake of simplicity, we sometimes let hii = λi from now on throughout
this paper. To prove our Theorem we need another lemmas.

Lemma 4.2. Suppose hii = h44 = λ at some point p for i = 1, 2 or 3. Then,

S =
12λ4 + 4λ2

5λ2 − 1
.(4.13)

Proof. Without loss of generality, we can assume h33 = h44 = λ at some point p.
Then (4.7) implies h334(p) = 0. Together with (4.7) and (4.8), it implies

h3311 = h3322 = h3333 = 0, at p.(4.14)

Hence, (4.4) and (4.14) imply

h3344 = (4− S)h33, at p(4.15)

and (2.5) implies

h4433 = h3344 + (h44 − h33)(1 + h44h33) = h3344, at p.(4.16)

In the equation (2.9),
∑

i,j h
2
ij3 = 0 at p. Hence, we have

h11h1133 + h22 h2233 + h33 h3333 + h44 h4433 = 0, at p.(4.17)

By using (2.5) and (4.14) we know, at p

(4.18)

{
h1133 = h3311 + (h11 − λ)(1 + h11 λ) = (λ1 − λ)(1 + λ1 λ),

h2233 = h3322 + (h22 − λ)(1 + h22 λ) = (λ2 − λ)(1 + λ2 λ).

Hence, (4.17) and (4.18) imply

λ1 (λ1 − λ)(1 + λ1 λ) + λ2 (λ2 − λ)(1 + λ2 λ) + λ (4− S)λ = 0.(4.19)

Here, since

(4.20)

{
λ1 + λ2 + 2λ = 0, λ2

1 + λ2
2 + 2λ2 = S, λ1 λ2 = 3λ2 − S

2 ,

λ3
1 + λ3

2 = (λ2
1 + λ2

2 − λ1 λ2)(λ1 + λ2) = 10λ3 − 3Sλ,

(4.19) becomes

S + 4λ2 + 12λ4 − 5Sλ2 = 0,

and so,

S =
12λ4 + 4λ2

5λ2 − 1
.
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It completes the proof of Lemma 4.2. 2

The following Lemma 4.3 and Lemma 5.1 are proved in the same methods as
in our early paper [7].

Lemma 4.3. If M4 has 2 distinct principal curvatures at some point, then S = 4.

Proof. Suppose M4 has 2 distinct principal curvatures at some point, say, p. With-
out loss of generality, we can assume either one of the following three cases for some
λ ̸= 0:

Case 1. Suppose h22 = h33 = h44 = λ and h11 = −3λ at p . Then

S = h2
11 + h2

22 + h2
33 + h2

44 = 12λ2.(4.21)

Hence, (4.13) and (4.21) imply S = 4, i.e., M4 = S1(
√
1/4 )× S3(

√
3/4 ).

Case 2. Suppose h11 = h22 = −λ, h33 = h44 = λ at p. Then

S = h2
11 + h2

22 + h2
33 + h2

44 = 4λ2.(4.22)

Hence, (4.13) and (4.22) imply S = 4, i.e., M4 = S2(
√
1/2 ) × S2(

√
1/2 ). But, it

is not G-invariant.
Case 3. Suppose h11 = h22 = h33 = λ and h44 = −3λ at p. Then from (3.12),

we have at p

cos r
dθ

ds
+

tan θ

sin r

dr

ds
= cos r

dθ

ds
− cot θ

sin r

dr

ds
= − sin2 r

cos r

dθ

ds
.(4.23)

From (4.23), we have

dr

ds
= 0 and

dθ

ds
= 0,(4.24)

which means that h11 = h22 = h33 = h44 = λ = 0 at p. It is contrary to the
hypothesis and completes the proof of Lemma 4.3. 2

Lemma 4.4. If S > 4 and i = 1, 2, 3, then
(1) for each i, there exists a point qi in M such that hii(qi) = 0 and
(2) for all i, h44 ̸= hii anywhere.

Proof. (1) Suppose that the conclusion is not valid. Without loss of generality, we
can assume that h33 > 0 everywhere. Consider a point p0, such that

h33(p0) = min
M4

h33 > 0.(4.25)

Then, due to the maximal principle, we have

e4(h33)(p0) = h334(p0) = 0 and Hess. h33(e4, e4)(p0) ≥ 0.(4.26)
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Now, we have

Hess. h33(e4, e4) = (e4e4 −∇e4e4)(h33) = h3344 −
∑
s

ω4s(e4)h33s = h3344.(4.27)

Here, since h334(p0) = 0, by using (4.7) and (4.8) we have at p0

h3311 = h3322 = h3333 = 0

and so,

h3344 = (4− S)h33.(4.28)

From (4.26), (4.27) and (4.28), we have

h3344 = (4− S)h33(p0) ≥ 0,

which is contrary to the hypotheses that S > 4 and h33(p0) > 0.

(2) Suppose the conclusion is not valid. Without loss of generality, we can
assume that h33 = h44 = λ at some point p. Then since S > 4, it follows h11, h22, λ
are distinct at p by Lemma 4.3 and λ ̸= 0 by Lemma 4.2. From now on, all
computations are performed at p. (4.7) gives h334 = 0. From (4.2), we have

(4.29)

{
h1144 + h2244 + h3344 + h4444 = 0,

λ1 h1144 + λ2 h2244 + λh3344 + λh4444 = −h2
114 − h2

224 − h2
444.

It follows that

(λ− λ1)h1144 + (λ− λ2)h2244 = h2
114 + h2

224 + h2
444.(4.30)

Here, from (2.5) and (4.7) we have

(4.31)



h1144 = h4411 + (h11 − h44)(1 + h11h44)

= (h444 − 2h114)ω41(e1) + (λ1 − λ)(1 + λ1λ)

= (h444 − 2h114)h114/(λ− λ1) + (λ1 − λ)(1 + λ1λ),

h2244 = h4422 + (h22 − h44)(1 + h22h44)

= (h444 − 2h224)ω42(e2) + (λ2 − λ)(1 + λ2λ)

= (h444 − 2h224)h224/(λ− λ2) + (λ2 − λ)(1 + λ2λ).

Hence, by using (4.1) and (4.31) we have

LHS of (4.30) = (λ− λ1)h1144 + (λ− λ2)h2244

= h444(h114 + h224)− 2h2
114 − 2h2

224 − {(λ1 − λ)2(1 + λ1λ) + (λ2 − λ)2(1 + λ2λ)}
= −h2

444 − 2h2
114 − 2h2

224 − {(λ1 − λ)2(1 + λ1λ) + (λ2 − λ)2(1 + λ2λ)}
= −h2

444 − 2h2
114 − 2h2

224,
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since

(λ1 − λ)2(1 + λ1λ) + (λ2 − λ)2(1 + λ2λ)

= λ2
1 + λ2

2 + 2λ2 − 2(λ1 + λ2)λ+ (λ3
1 + λ3

2)λ− 2(λ2
1 + λ2

2)λ
2 + (λ1 + λ2)λ

3

= S + 4λ2 + 12λ4 − 5Sλ2 = 0

by using (4.20) and Lemma 4.2. Hence, from (4.30) and (4.5) we obtain

0 = 3h2
114 + 3h2

224 + 2h2
444 = S(S − 4) + h2

444.

It contradicts to the hypothesis that S > 4 and completes the proof. 2

5. Proof of Our Theorem

From Lemma 4.3, we know that if S ≤ 4, then S = 4. Moreover, Lemma 4.3
says that if S > 4, then M4 does not have 2 distinct principal curvatures anywhere.
Therefore, if S > 4, then M4 must have simple principal curvatures everywhere or
3 distinct principal curvatures at some point. To prove our Theorem, it suffices to
show that if S > 4, then M4 does not have simple principal curvatures everywhere
and 3 distinct principal curvatures anywhere.

Lemma 5.1. If S > 4, then M4 does not have simple principal curvatures every-
where.

Proof. Suppose that M4 has only simple principal curvatures everywhere. Then
since all principal curvatures hii’s are constant on each orbit, without loss of gen-
erality we can assume everywhere either one of the following three cases:

(1) h11 < h22 < h33 < h44,

(2) h11 < h22 < h44 < h33,

(3) h44 < h11 < h22 < h33.

Now, from (1) of Lemma 4.4 we know there exist points q1 and q3 in M4 such
that h11(q1) = 0 and h33(q3) = 0 respectively. Hence the above each case is contrary
to the fact that

h11(q1) + h22(q1) + h33(q1) + h44(q1) = 0 or

h11(q3) + h22(q3) + h33(q3) + h44(q3) = 0.

Therefore, M4 does not have simple principal curvatures everywhere. 2

Lemma 5.2. If S > 4, then M4 does not have 3 distinct principal curvatures
anywhere.
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Proof. Suppose that M4 has 3 distinct principal curvatures at some point p. Then
by (2) of Lemma 4.4, without loss of generality we may assume that λ1 = λ2 = λ
and λ, λ3, λ4 are distinct at p. All computations are performed at p. From (4.1),
we have

(5.1)

{
h114 + h224 + h334 + h444 = 0,

λ h114 + λh224 + λ3 h334 + λ4 h444 = 0.

Let h114 = b h224 for some real number b. Then, (5.1) becomes

(5.2)

{
(1 + b)h224 + h334 + h444 = 0,

(1 + b)λh224 + λ3 h334 + λ4 h444 = 0.

It follows that

(5.3)

{
h114 = (λ4 − λ3) a b, h224 = (λ4 − λ3) a,

h334 = (λ− λ4) a (1 + b), h444 = (λ3 − λ)a(1 + b)

for some real number a. Here since S > 4, a ̸= 0 from (4.5).
Now (2.5) implies

h3311 − h1133 = (λ3 − λ)(1 + λ3 λ) = h3322 − h2233.(5.4)

And, (4.8), (4.7) and (5.3) imply

(5.5)


h3311 − h1133 = h334 ω41(e1)− h114 ω43(e3)

= h334h114/(λ4 − λ)− h114 h334/(λ4 − λ3)

= (λ3 − λ)a2b(1 + b),

h3322 − h2233 = h334 ω42(e2)− h224 ω43(e3) = (λ3 − λ)a2(1 + b).

Hence, from (5.4) and (5.5) we get

(λ3 − λ)a2b(1 + b) = (λ3 − λ)(1 + λ3 λ) = (λ3 − λ)a2(1 + b)(5.6)

and so,

b = −1 or b = 1.(5.7)

To prove our Lemma 5.2, it therefore suffices to show that b ̸= −1 and b ̸= 1.
Case 1. In the case b = −1 : (5.6) implies (λ3 − λ)(1 + λ3 λ) = 0, i.e.,

λ ̸= 0, λ3 =
−1

λ
and λ4 =

1

λ
− 2λ.(5.8)
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Hence,

S = 2λ2 + λ2
3 + λ2

4 = 6λ2 +
2

λ2
− 4.(5.9)

From (5.3) and (4.7), we have

h114 = −h224, h334 = h444 = 0, ω41(e1) = −ω42(e2), ω43(e3) = 0.(5.10)

Hence, from (4.5) and (5.10) we have

6h2
114 = S(S − 4).(5.11)

Let h114ω41(e1) = c. Then, by using (4.7) and (5.8) we have

c(λ4 − λ) = h2
114 and so c =

h2
114

λ4 − λ
=

h2
114 λ

1− 3λ2
.(5.12)

Moreover, by using (4.7), (4.8), (4.4) and (5.10) we also have

(5.13)


h1111 = 3c, h1122 = −c, h1133 = 0, h1144 = (4− S)λ− 2c,

h2211 = −c, h2222 = 3c, h2233 = 0, h2244 = (4− S)λ− 2c,

h3311 = 0, h3322 = 0, h3333 = 0, h3344 = (4− S)λ3,

h4411 = −2c, h4422 = −2c, h4433 = 0, h4444 = (4− S)λ4 + 4c.

Now, we can not draw anymore here and have to appeal to covariant derivatives
of h up to the third order.

We compute 6h114h11444 in Step 1 and Step 2 respectively by using different
ways, and show that in Step 3 they are not equal mutually to prove b ̸= −1.

Step 1. First we compute 6h114h11444 by using one way. From (4.9), (4.12)
and (5.10), we have

h44433 = 0, h33444 = h44433, and so, h33444 = 0.(5.14)

Since h1144 = h2244 from (5.13), by using (4.3), (5.10) and (5.14) we have

(5.15)

{
h11444 + h22444 + h44444 = 0,

λh11444 + λh22444 + λ4h44444 = 0.

If follows that

h11444 = −h22444 and h44444 = 0.(5.16)

Hence, from (4.6), (5.10) and (5.16) we obtain

6h114h11444 = −6h2
1144 − 3h2

3344 − h2
4444.(5.17)
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Step 2. Second we compute 6h114h11444 in another way. From (4.12), (4.9) and
(5.10), we also have

6h114h11444 = 6h114h44411 + 6(5 + 6h11h44 − h2
44)h

2
114(5.18)

= 6(h4444 − 3h4411)c+ 6(5 + 6λλ4 − λ2
4)h

2
114.

Step 3. We must show that (5.17) ̸= (5.18). Suppose (5.17) = (5.18). Then

6h2
1144 + 3h2

3344 + h2
4444 + 6(h4444 − 3h4411)c+ 6(5 + 6λλ4 − λ2

4)h
2
114 = 0.(5.19)

By using (5.11), (5.13) and the fact that S − 4 ̸= 0, (5.19) becomes

(S − 4)(6λ2 + 3λ2
3 + λ2

4) + (24λ− 14λ4)c+ S(5 + 6λλ4 − λ2
4) +

100c2

S − 4
= 0.

(5.20)

Let λ2 = t. Then, by using (5.8), (5.9), (5.11) and (5.12) we have

(5.21)



S = 6t+
2

t
− 4, (S − 4)t = 2(3t− 1)(t− 1),

c =
h2
114

λ4 − λ
=

S(S − 4)λ

6(1− 3t)
, λc =

S(S − 4)t

6(1− 3t)
,

6λ2 + 3λ2
3 + λ2

4 = 6λ2 + 3
1

λ2
+

(
1

λ
− 2λ

)2

= 2S − 2t+ 4,

(24λ− 14λ4)c = −14(λ4 − λ)c+ 10λc = −7

3
S(S − 4) +

5S(S − 4)t

3(1− 3t)
,

5 + 6λλ4 − λ2
4 = −(3λ2 +

1

λ2
− 2)− 13λ2 + 13 = −S

2
− 13t+ 13.

Substituting (5.21) to (5.20), we have

(55t− 85)S2 − (990t2 − 1500t+ 390)S + 432t2 − 1008t+ 288 = 0.(5.22)

By eliminating S from the above two equations (5.21) and (5.22), we have

990t5 − 1923t4 + 1262t3 − 142t2 − 200t+ 85 = 0.(5.23)

Here, since S = 6t+ 2/t− 4 > 4, we have 0 < t < 1/3 or t > 1.
For all t such that 0 < t < 1/3,

LHS of (5.23) = 990t5 − 1923t4 + 1262t3 − 142t2 − 200t+ 85

= 110(1− 3t)2t3 + 421(1− 3t)t3 + 16(1− 3t)(1 + 3t) + 67(1− 3t)

+ 731t3 + 2t2 + t+ 2 > 0.
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Moreover, for all t such that t > 1

LHS of (5.23) = 990t5 − 1923t4 + 1262t3 − 142t2 − 200t+ 85

= 962(t− 1)2t3 + 100(t− 1)2 + 242(t− 1)t2 + 15(t3 − 1)

+ 28t5 + t4 + 43t3 > 0.

Hence, there is no a root of the equation (5.23). It follows that b ̸= −1.

Case 2. In the case b = 1 : From (5.3) and (4.7), we have

(5.24)

{
h114 = h224 = (λ4 − λ3) a, h334 = 2(λ− λ4)a, h444 = 2(λ3 − λ)a,

ω41(e1) = ω42(e2) = h114/(λ4 − λ), ω43(e3) = h334/(λ4 − λ3)

and from (4.5) and (5.24), we also have

S(S − 4) = 3h2
114 + 3h2

224 + 3h2
334 + h2

444(5.25)

= {6(λ4 − λ3)
2 + 12(λ− λ4)

2 + 4(λ3 − λ)2} a2.

We compute h1144 in Step 1 and Step 2 respectively by using different ways,
and show that in Step 3 they are not equal mutually to prove b ̸= 1.

Step 1. First we compute h1144 in one way. Now, (4.4), (4.7) and (5.24) give

h1144 = (4− S)λ− h1111 − h1122 − h1133(5.26)

= (4− S)λ− h114{3ω41(e1) + ω42(e2) + ω43(e3)}

= (4− S)λ− 4(λ4 − λ3)
2

λ4 − λ
a2 + 2(λ4 − λ)a2.

Step 2. Second we compute h1144 by using another way. Here,

h2244 = (4− S)λ− h224{ω41(e1) + 3ω42(e2) + ω43(e3)} = h1144.

Hence, (4.2) and (4.6) imply a system of equations:

(5.27)


2h1144 + h3344 + h4444 = 0,

2λh1144 + λ3 h3344 + λ4 h4444 = −8Sa2,

6h114 h1144 + 3h334 h3344 + h444 h4444 = 0,

since

2h2
114 + h2

334 + h2
444 = {2(λ4 − λ3)

2 + 4(λ− λ4)
2 + 4(λ3 − λ)2} a2

= {8λ2 + 8λ2
3 + 8λ2

4 − 2(λ2
3 + λ2

4 + 2λ3λ4)− 8λ(λ3 + λ4)}a2

= 8(2λ2 + λ2
3 + λ2

4)a
2 = 8S a2.
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By using (5.24) and (5.25), from the system (5.27) of equations we also compute

h1144 =
8(h444 − 3h334)Sa

2

6h114(λ4 − λ3) + 3h334(2λ− 2λ4) + h444(2λ3 − 2λ)
(5.28)

=
8(h444 − 3h334)Sa

3

6h2
114 + 3h2

334 + h2
444

=
32(λ4 − 3λ)

S − 4
a4.

Step 3. We want to show that (5.26) ̸= (5.28). From (5.6), we have

1 + λ3 λ = 2a2.(5.29)

Case 2− 1. Suppose that λ = 0. Then, it follows from (5.29) that

a2 =
1

2
, λ4 = −λ3 ̸= 0 and S = 2λ2

4.(5.30)

Hence, (5.30) and (5.25) imply
(5.26) = (4− S)λ− 4(λ4 − λ3)

2

λ4 − λ
a2 + 2(λ4 − λ)a2 = −7λ4

(5.28) =
32(λ4 − 3λ)

S − 4
a4 =

32(λ4 − 3λ)S

S(S − 4)
a4 =

64λ3
4

40λ2
4

a2 =
4

5
λ4.

Hence, (5.26) ̸= (5.28), and so b ̸= 1.

Case 2− 2. Suppose λ ̸= 0 and (5.26) = (5.28). Then, we have

(4− S)λ− 4(λ4 − λ3)
2

λ4 − λ
a2 + 2(λ4 − λ)a2 =

32(λ4 − 3λ)

S − 4
a4.(5.31)

Let λ2 = t and 2a2 − 1 = u. Then, from (5.29) we have

λ3 =
u

λ
, λ4 =

−u

λ
− 2λ, S = 2λ2 + λ2

3 + λ2
4 = 6t+

2u2

t
+ 4u.(5.32)

Substituting (5.32) to (5.25) and (5.31), respectively, we obtain

(5.33)


u4 − tu3 − (4t2 + 7t)u2 − (5t3 + 18t2)u+ (9t4 − 23t3) = 0,

5u5 + (14t+ 7)u4 + (28t2 + 26t)u3 + (4t3 + 124t2 − 10t)u2

−(93t4 − 222t3 − 4t2)u− (54t5 − 69t4 − 38t3) = 0.

To find such pairs of numbers t, u that satisfy the above system (5.33) of equations,
let us eliminate u. First, by eliminating u5 and u4 from (5.33), we have

(67t+ 68)u3 + (105t2 + 375t+ 39)u2 + (−43t3 + 714t2 + 130t)u(5.34)

− (225t4 − 443t3 − 199t2) = 0.
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{(5.34)× u} and (5.33) imply

(172t2 + 443t+ 39)u3 + (225t3 + 1455t2 + 606t)u2(5.35)

+ (110t4 + 1989t3 + 1423t2)u− (603t5 − 929t4 − 1564t3) = 0.

{(5.34)× (172t2 + 443t+ 39)− (5.35)× (67t+ 68)} ÷ 3 becomes

(995t4 − 590t3 + 12462t2 − 3102t+ 507)u2(5.36)

= (4922t5 + 12328t4 − 35464t3 + 3776t2 − 1690t)u

− 567t6 + 14906t5 − 17914t4 + 306t3 − 2587t2.

Second, (5.34)× (995t4 − 590t3 + 12462t2 − 3102t+ 507) and (5.36) give

(67t+ 68)u{(4922t5 + 12328t4 − 35464t3 + 3776t2 − 1690t)u(5.37)

− 567t6 + 14906t5 − 17914t4 + 306t3 − 2587t2}
+ (105t2 + 375t+ 39){(4922t5 + 12328t4 − 35464t3 + 3776t2 − 1690t)u

− 567t6 + 14906t5 − 17914t4 + 306t3 − 2587t2}
+ (−43t3 + 714t2 + 130t)(995t4 − 590t3 + 12462t2 − 3102t+ 507)u

− (225t4 − 443t3 − 199t2)(995t4 − 590t3 + 12462t2 − 3102t+ 507) = 0.

Here, (5.37)÷ 2t(67t+ 68) becomes

(2461t4 + 6164t3 − 17732t2 + 1888t− 845)u2(5.38)

+ (3254t5 + 32788t4 − 32704t3 − 1620t2 − 5174t)u

+ (−2115t6 + 16520t5 − 10652t4 + 10788t3 − 9933t2) = 0.

Third, (5.38)× (995t4 − 590t3 + 12462t2 − 3102t+ 507) and (5.36) give

(2461t4 + 6164t3 − 17732t2 + 1888t− 845){(4922t5 + 12328t4 − 35464t3

+ 3776t2 − 1690t)u− 567t6 + 14906t5 − 17914t4 + 306t3 − 2587t2}
+ (3254t5 + 32788t4 − 32704t3 − 1620t2 − 5174t)(995t4 + · · ·+ 507)u

+ (−2115t6 + 16520t5 − 10652t4 + 10788t3 − 9933t2)(995t4 + · · ·+ 507) = 0.

And dividing the above equation by 4t(67t+ 68) we obtain

(57279t7 + 282846t6 − 697135t5 + 698506t4 − 129559t3 − 69294t2(5.39)

+ 36855t− 4394)u = (13059t7 − 203082t6 + 164525t5

+ 376306t4 − 906107t3 + 494522t2 − 124805t+ 10478)t.
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In the same way as above, (5.36) × (57279t7 + · · · − 4394) and (5.39) imply an
equation. And dividing the equation by (995t4 + · · ·+ 507) we also obtain

(13059t7 − 203082t6 + 164525t5 + 376306t4 − 906107t3 + 494522t2(5.40)

− 124805t+ 10478)u = (31959t7 − 126930t6 + 959993t5

− 2470086t4 + 2650385t3 − 1084542t2 + 226831t− 12506)t.

Last, using (5.39) and (5.40) we obtain an equation in which u is eliminated and
dividing both sides of the equation by 32(995t4 + · · ·+ 507) we obtain

52137t10 + 253062t9 − 2033508t8 + 5141910t7 − 7134618t6(5.41)

+ 6230014t5 − 3591608t4 + 1378538t3 − 343231t2 + 50684t− 3380

= (t− 1)2(3t− 1)2(5793t6 + 43566t5 − 123930t4 + 139498t3

− 79719t2 + 23644t− 3380) = 0.

From (5.39), (5.40) and (5.32), we see that if t = 1 or 1
3 , then u = −1 and S = 4.

But since S > 4, we know t ̸= 1 and t ̸= 1
3 . Hence, from (5.41) we have an equation

5793t6 + 43566t5 − 123930t4 + 139498t3 − 79719t2 + 23644t− 3380 = 0.(5.42)

Let

f(t) = 5793t6 + 43566t5 − 123930t4 + 139498t3 − 79719t2 + 23644t− 3380.

Then, we have

f ′(t) = 34758t5 + 217830t4 − 495720t3 + 418494t2 − 159438t+ 23644,

f ′′(t) = 6(28965t4 + 145220t3 − 247860t2 + 139498t− 26573),

f ′′′(t) = 6(115860t3 + 435660t2 − 495720t+ 139498)

= 6(28965t+ 131172)(2t− 1)2 + 6(26832t2 + 3t+ 8326) > 0.

Since f ′′′(t) > 0 for all t > 0, f ′′ is increasing. And since f ′′(0) < 0, there is only
one real number α (5/12 < α < 1/2) such that f ′′(α) = 0. That is, f ′ has only one
local minimum at α. For the α,

f ′(α) = 34758α5 + 217830α4 − 495720α3 + 418494α2 − 159438α+ 23644

=

(
6α

5
− 1

)
(28965α4 + 145220α3 − 247860α2 + 139498α− 26573)

+ 72531α4 − 53068α3 + 3236α2 + 11947α− 2929 +
2

5
α2 +

3

5
α

= 72531α4 − 53068α3 + 3236α2 + 11947α− 2929 +
2

5
α2 +

3

5
α

> (8059α2 − 524α− 886)(3α− 1)2 + (2α+ 11)(α− 1)2 + 7175α− 2054 > 0,
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since 8059α2 − 524α − 886 > 0 and 7175α − 2054 > 0. Hence f ′(t) > 0 for all
t > 0, and so f is increasing. It implies that the equation (5.42) has only one
root β (≈ 0.654) between 3/5 and 2/3, since f(3/5) < 0 and f(2/3) > 0. Since
S = 6t+ 2u2/t+ 4u > 4, we have

u2 + 2tu+ 3t2 − 2t > 0

and for the root t = β we also have

u2 + 2βu+ 3β2 − 2β > 0.

Hence, we have

u < −β −
√
2β(1− β) and u > −β +

√
2β(1− β).(5.43)

In fact, since 3/5 < β < 2/3 we have

−β −
√

2β(1− β) < −1 and − β +
√
2β(1− β) > 0.(5.44)

Since u = 2a2 − 1 > −1, from (5.43) and (5.44) we need at least that u > 0. But
from (5.39) and (5.40) we can compute that u ≈ −1.12 < 0 . Therefore there is no
a pair t, u satisfying (5.33) such that t > 0, t ̸= 1

3 , t ̸= 1 and u > 0. That is, it
follows that b ̸= 1, which completes the proof of Lemma 5.2. 2

We completes the proof of our Theorem by Lemma 5.1 and Lemma 5.2.
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