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ABSTRACT. Let G = O(2) x O(2) x O(2). Then a closed G-invariant minimal hypersurface
with constant scalar curvature in S° is a product of spheres, i.e., the square norm of its
second fundamental form, S = 4.

1. Introduction

Let M™ be a closed minimally immersed hypersurface in the unit sphere S™*1,
and h its second fundamental form. Denote by R and S its scalar curvature and
the square norm of h, respectively. It is well known that S = n(n —1) — R from the
structure equations of both M™ and S *!. In particular, S is constant if and only
if M has constant scalar curvature. In 1968, J. Simons [6] observed that if S < n
everywhere and S is constant, then S € {0, n}. Clearly, M™ is an equatorial sphere
if § =0. And when S =n, M™ is indeed a product of spheres, due to the works of
Chern, do Carmo, and Kobayashi [2] and Lawson [4].

We are concerned about the following conjecture posed by Chern [9].

Chern Conjecture. For any n > 3, the set R,, of the real numbers each of which
can be realized as the constant scalar curvature of a closed minimally immersed
hypersurface in S"*! is discrete.

C. K. Peng and C. L. Terng [5] proved

Theorem(Peng and Terng, 1983). Let M™ be a closed minimally immersed hyper-
surface with constant scalar curvature in S™*1. If S > n, then S > n + 1/(12n).

S. Chang [1] proved the following theorem by showing that S = 3 if S > 3 and
M? has multiple principal curvatures at some point.

Theorem(Chang, 1993). A closed minimally immersed hypersurface with constant
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scalar curvature in S* is either an equatorial 3-sphere, a product of spheres, or a
Cartan’s minimal hypersurface. In particular, Rs = {0,3,6}.

H. Yang and Q. M. Cheng [8] proved

Theorem(Yang and Cheng, 1998). Let M™ be a closed minimally immersed hy-
persurface with constant scalar curvature in S"*1. If S > n, then S > n + n/3.

Let G ~ O(k) x O(k) x O(q) C O(2k + q) and set 2k + ¢ = n + 2. Then W.
Y. Hsiang [3] investigated G-invariant, minimal hypersurfaces, M™ in S"*1 by
studying their generating curves, M™/G, in the orbit space S"*1/G. He showed
that there exit infinitely many closed minimal hypersurfaces in S"*! for all n > 2,
by proving the following theorem:

Theorem (Hsiang, 1987). For each dimension n > 2, there exist infinitely many,
mutually noncongruent closed G-invariant minimal hypersurfaces in S™+!, where
G ~O0(k) x O(k) x O(q) and k =2 or 3.

We studied G-invariant minimal hypersurfaces, in stead of minimal ones, with
constant scalar curvatures in S°. In this paper, we shall prove the following classi-
fication theorem:

Our Theorem. A closed G-invariant minimal hypersurface with constant scalar
curvature in S° is a product of spheres, i.e., S = 4, where G = O(2) x O(2) x O(2).

Let M* be a closed G-invariant minimal hypersurface with constant scalar cur-
vature in S°. By virtue of the results of Simons [6], we see that if S < 4, then
S € {0, 4}. In Lemma 4.3, we show that if M* has 2 distinct principal curvatures
at some point, then S = 4. Since any equatorial sphere is not G—invariant, we see
that if S < 4 then S = 4. Moreover, Lemma 4.3 says that if S > 4, then M* does
not have 2 distinct principal curvatures anywhere. Therefore, if S > 4 then M*
must have simple principal curvatures everywhere or 3 distinct principal curvatures
at some point. To prove our Theorem, we need only to show that it is impossible.
In Lemma 5.1 and Lemma 5.2, we show that if S > 4 then M* does not have sim-
ple principal curvatures everywhere and 3 distinct principal curvatures anywhere,
respectively.

2. Preliminary Results

Let M"™ be a mamfolﬂof dimension n immersed in a Riemannian manifold M nr
of dimension n+1. Let V and (, ) be the connection and metric tensor respectively

p— 1 — —_
of M and let R be the curvature tensor with respect to the connection V on
—n+1 . —n+l
M. Choose a local orthonormal frame field €1y, Enyl in M such that after

restriction to M™, the ey, ..., e, are tangent to M"™. Denote the dual coframe by
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{wa}. Here we will always use i, j, k, ..., for indices running over {1,2,...,n} and
A, B,C,...,over {1,2,...,n+ 1}
As usual, the second fundamental form h and the mean curvature H of M™ in

M are respectively defined by

h(v,w) = (Vyw, ept1) and H = Zh(ei, €i).

M™ is said to be minimal if H vanishes identically. And the scalar curvature R of
M s defined by
R= Z(R(eA, €B)en, €A).

A,B

. w7ntl .
Then the structure equations of M " are given by

dws =Y wapAwp, wap+wpa =0,
B
1
dwap = ZC:WAC ANwcp — icngABCDwC ANwp,

where Kapop = (R(ea, ep)ep, ec). When M is the unit sphere S™*!, we have
Kapcp = 04c 08D — 04D 0BC-
Next, we restrict all tensors to M™. First of all, w,+1 =0 on M"™. Then

Zw(n+1)i ANw; = dwpy1 = 0.
i

By Cartan’s lemma, we can write
w(m_l)i = — Z hij Wy.
J

Here, we see

(21> hij = _w(n—i-l)i(ej) = _<vejen+1a ei> = <vejei7 en+1> = <vei€j7 en+1>
= h(ei,ej).

Second, from
dwi: E Wij /\w]', Wij +wj¢:0,
J

1
dwij =Y wi Awyj — 3 > Rijim wi A win,
!

l,m
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we find the curvature tensor of M™ is
(2.2) Rijim = Kijim + hit Rjm — Pim Rji.

Therefore, if M™ is a piece of minimally immersed hypersurface in the unit
sphere S"*1 and R is the scalar curvature of M™, then we have

(2.3) R=n(n—-1)-S5,

where S =3}, h?j is the square norm of h.

Given a symmetric 2-tensor T' = ZZ ; Tij wiw; on M™, we also define its covari-
ant derivatives, denoted by VT, V2T and V3T, etc. with components Tijks Tij okl
and Tj; rip , respectively, as follows:

(2.4)
Zﬂj7ko.}k = dnj + ZTSJ Wsi + ZTiSw5j7
k s i

Z Tijriw = d T + Z Tsjkwsi + Z Tis o wsj + Z Tij,s Wk,
1 S s s

S Tijkpwp =dTijm+ > Tojmwsi+ > Tiskiwei + 3 Tijst Wek + 3 Tijiks Wal-
S S S

y4 S

In general, the resulting tensors are no longer symmetric, and the rule to switch
sub-index obeys the Ricci formula as follows:

(2.5) Tijet — Tijuk = Z Tsj Reipt + Z Tis Rejri,
s s
Tij,klp - Tij,kpl = Z Tsj,k: Rsilp + Z Tis,k stlp + Z Tij,s Rsklp7
s s s
711'j,klpm - T’ij,khnp = Z Tsj,kl Rsipm

+ Z Tis,k:l stpm + Z Tij,sl Rskpm + Z Tij,k:s Rslpm~

For the sake of simplicity, we always omit the comma (, ) between indices in

. . ——n+1 .
the special case T' = Zij hij wi wj with M = st Since

Z K(nt1yicpwe ANwp =0
C.D

on M™ when M = S+ we find

d Zh” Wy = Zhﬂwl /\Wji-
J gl



On G-invariant Minimal Hypersurfaces with Constant Scalar Curvatures in S> 519

Therefore,

Z hijl wp Awj = Z (dhlj + Z hlj wyi + Z hi wlj> Nwj = 0;
VR l l

J

i.e., hy; is symmetric in all indices.
In the case that M™ is minimal, by differentiating >, hyy = 0 we have

(2.6) 0=eje; (Z hu) = Zej(hlli) = Z by
] I I

and so,

(2.7)

INTEDITEDS {hlilj + 2 (o Rt + h’mRmiﬂ)}
1 l m

l
= ('fl - l)hij + Z {_hmihmlhlj + hlm((smjail - 6ml5ij =+ hmjhil - hmlhz])}

l,m

=nh;; — Z himhmihi; = (n — S)hgj.

lLm

It follows that

1
(2.8) 5 AS = (n—8)S+>_ hij.

0,950

In the case that S is constant, by differentiating S =5, j hfj twice , we have

(2.9) 0= Z hijhijrr + Z hiji hiji-
— —

3. G-invariant Hypersurface in S"*!

For G ~ O(k)xO(k)xO(q), R"*? splits into the orthogonal direct sum of irreducible
invariant subspaces, namely

R~ RF@RF @RI = {(X,Y,2)}

where X and Y are generic k-vectors and Z is a generic g-vector. Here if we set
= |X|,y = |Y]| and z = |Z|, then the orbit space R"*2/G can be parametrized
by (z, y, z); x, y, = € Ry and the orbital distance metric is given by ds? = dx? +
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dy® + dz?. By restricting the above G-action to the unit sphere S"*1 C R"*2 it is
easy to see that

S"G = {(2,y,2) s 2 +y* + 2 =12, y, 2 > 0}

which is isometric to a spherical triangle of S?(1) with 7/2 as its three angles. The
orbit labeled by (z,v, 2) is exactly S*~1(x) x S¥71(y) x S171(z2).

In this section, M™ is a closed G- invariant hypersurface in S"t!. V and
V are the Riemannian connections of M™ and S™*!, respectively. To investigate
those G-invariant minimal hypersurfaces, we study their generating curves, v(s) =
(z(s),y(s),2(s)) = M™/G, in the orbit space S"*1/G.

Let us start with the following two lemmas which play very important roles in
proving our Theorem.

Lemma 3.1. Let M™ be a G-invariant hypersurface in S"t1. Then there is a local

orthonormal frame field e1, . .., en11 on S™L such that after restriction to M™, the

et1,...,en are tangent to M™ and h;; =0 if i # j.

Proof. Let (Xo, Yy, Zo) € M™ C S"! with x = |Xo|, y = [Yo| and 2 = |Zp| and

choose a local orthonormal frame field on a neighborhood of (X, Yo, Zy) as follows.
First, we choose vector fields uy,...,Uk—1, V1,...,0k—1, W1,...,Wg—1 ON &

neighborhood U of (Xy, Yy, Zp) in the orbit S*~1(x) x S¥~1(y) x S971(2) such
that:
(1) wy,...,up—1 are lifts of orthonormal tangent vector fields uq, ..., ux_1 on
a neighborhood of Xy in S*~1(z) to S¥~1(x) x S*~1(y) x S971(2) respectively,
(2) v1,...,0—1 are lifts of orthonormal tangent vector fields vy,...,vk_1 on
a neighborhood of Yy in S*~1(y) to S*~1(z) x S¥71(y) x S971(z) respectively,
(3) wr,...,wq—1 are lifts of orthonormal tangent vector fields w1, ..., wy—1 on

a neighborhood of Zy in S971(2) to S*~!(x) x S*71(y) x ST71(2) respectively.

Second, let N(s) = (n1(s),na(s),n3(s)) be a local unit normal vector field on
in S"*1/G. For each p = (X,Y, Z) € U, let 7(p, s) be the lift curve of v(s) in S"+!
through p. and let N(p, s) be the lift vector field of N(s) on ¥(p, s). Then we know

(3.1) p.5) = (X(s), Y (5), Z(s)) = (x<s>, OLENPLL

and so,

(3.2) 5 (p,s) = (m'<s>X, y(s)Y, z’(s)Z)
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and

(3.3) N(]L s) = (nl(s) );((;)), na(s) };((j))’ n3(s) féj;) .

The two orthonormal vector fields 5" and N are defined on a neighborhood in M™.
Third, let us extend uy,...,Ur—1, U1,...,Vk—1, Wi,...,Wq—1 OVer a neighbor-
hood in M as follows:
Let a;(u) = (ai(u), Y, Z) be a curve in S¥~1(x) x S¥71(y) x S771(z) through
p = (X,Y, Z) such that @;(0) = p and &;(0) = (/(0), 0, 0) = w;(p). From (2.1),

a(0) = @(a;(O), 0, 0) (:parallel to w;(p) in the Euclidean space)

is tangent to the orbit S*~!(x(s)) x S*¥~1(y(s)) x S971(2(s)) and so, to M™. It
says that the vector field obtained by Euclidean parallel translation of u; along 7 is
tangent to M™. Hence,

(*) extend Uy,...,Uk—1, U1,...,0k—1, W1,...,Wy—1 over a neighborhood in M

by Euclidean parallel translation along 7.

Then these vector fields @y, ..., Ug_1, V1,...,Ug_1, W1, . .- ,Eq,lﬁ’,ﬁ is a local or-
thonormal frame field on M™ and wy, ..., Uk—1,01,.-.,Uk—1,W1,...,Wq—1,7 are
tangent to M™. B

Last, let us extend @1, ..., Uk—1, U1,...,0k—1, W1,...,Wq—1,7 , N Over a neigh-

borhood in S™t! as follows:
From (2.1), we have

(3.4) h,»j:<vmj,N):_<aj,%iﬁ>.

Here, ﬁaiﬁ depends only the values of N along any smooth curve &; such that
@ = u;. Since N is already defined on a neighborhood in M™ and w; is a tangent
vector field on the neighborhood in M™, ﬁgiﬁ does not depend on the choice of
extending N. Hence,

() extend all vector fields over a neighborhood in S™*! properly.

The extended vector fields 1, ..., Uk—1, V1. .., Vp—1, W1,-- ., Wg—1, 7 5 N is a
local orthonormal frame field on S™*!. After restriction these vector fields to M™,
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Uly ooy Uk—1,y V1yevny Ug—1, W1, - .., We—1,7 are tangent to M™. For convenience, we
write them as ej,...,e,41 in order.
Now, let us compute h;;(p). From (3.2) and (3.3), we have

(@0 = (*0" yo T, 0),
(3.5) % A
« a0 n3<o>) .

If V* is the Riemannian connection of R"*2, then V = V*'. Hence, (3.5)
implies

oiw? = {70 @o.0.0) = {"Wap) - W)
Vain® =" o, 0.0} = {1054} - mOg,

x

Thus, from (3.4) and (3.6) we have at p

B hy = —(G), VamV) = - <a]-(p>, r(0) az-<p>> __mO,

Similarly, we have at p

- ~ ~ ’I’L2(O)
(38) he—1+i)(b—145) = (Ve Vj> N) = — " dijs
) - ~ ~ ng(O)
hr—2+i@r-2+j) = (Vo Wj, N) = —— 0.

And since V.. = (2(0),y"(0),2”(0)) " on S"*1/G, we have at p

(39)  hun=(Vs7, N)
= (@"(0) 2y (0)% SO0 m0)7 n2(0) . na(0)))
= 2(0) m(0) + //(0) ma(0) + (0) s (0)

((z"(0),y (), 2"(0)), N')
(V W'Y N) = rg(

where r4(7y) is the geodesic curvature of v at (x,y, z). Recall that
(3.10) ~(s) = (sinr(s) cosb(s),sinr(s)sin0(s), cosr(s)) = (z(s), y(s), z(s)).
Let (z,y,z) = v(0) = (sinrcos,sinrsinf, cosr). Then

dr 0 df 0

/ [ — —
7 (0) = ds Or + ds 06’
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where 0/0r = (cosrcosf, cosrsind, —sinr) and 9/90 = sinr(—siné, cosd, 0).
Now, let U = (9/0r) x 1/sinr (0/00) be a unit normal vector field on a neigh-
borhood of (z,y, z) in $S"*!/G. Then we have

(3.11)
N(0) = (n1(0),n2(0), n3(0))

dr 0 df 0
— = ! = Je O ds 90
_UXT—UX’Y(O)_UX<d38r+d839>
1 dr o . df o

sinr ds 00 bmr% or

do d
=— sinT£ (cosrcosf,—sinrcosrsind, —sinr) + d%; (—sinf, cosb,0).

Therefore, from (3.7), (3.8), (3.9), (3.10) and (3.11) we obtain

n1(0 dg  tan@dr
hiy == h(k—l)(k—l) = —L = COST — = )
x ds ~ sinr ds
n2(0) cot 6 dr
bk = -+ = hk-2)(2k-2) = — =COST —— — —— ——,
Y ds sinr ds
(3.12) . o _ n3(0)  sin’rdf
(2k—1)(2k—1) = - = hn_1)(n—1) = T “cosr ds’
hnn = 59(7)7
which completes the proof of Lemma 3.1. O

Note. In Lemma 3.1, those all h;’s are called the principal curvatures of M™.
All principal curvatures h;;’s are constant on each orbit from (3.12) and the vector
fields ey, - - ,e,—1 are tangent to each orbit from (%) of Lemma 3.1. Hence we have

(3.13) ej(hi1) = =€;(hnn) =0, forall j=1,--- ,n—1.

From now on throughout this paper, {e} is a local orthonormal frame field on
S7*1 such as the frame field in Lemma 3.1.

Lemma 3.2. Let M™ be a G-invariant hypersurface in S™t1. Then,

(1) all hiji = 0 except when {i,j,1} is a permutation of {i,i,n},

(2) all hijim = 0 except when {i,7,1,m} is a permutation of {i,i,j,j}.
Proof. (1) Since h;j; is symmetric in all indices, it suffices to show that h;j; = 0 if
i<j<land {i,j1} # {i,i,n}.

(L.a) Case 1. j#i: (2.4) together with Lemma 3.1 gives

(3.14) hiji = ei(hiz) + Z hsj wsiler) + Zhis wsj(er) = (hj; — hii) wyi(er)-
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If i, j < k —1, then from (3.12) h;; = hj;. Hence, (3.14) implies h;;; = 0 for all

Ifk<i,j<2k—2o0r2k—1<4,j <n—1,then also h;;; = 0 for all I.
And,if i <k—1and k < j <mn, then for all I (i < j <) we have

(3.15) hiji = hiij = ej(hii) + (hii — hu) wir(ej) = (his — hu)(Ve, e, er) = 0,

since V¢ e; = 0 by the Koszul formula. In the similar cases, we also have h;;; = 0.
Now, from (2.4) and Lemma 3.1, we have

(316) hmml - el(hmm) + Z hsm Wsm(el) + Z hms wsm(el) - el(hmm)~

Hence, if j =1 = n, then hiny = Myng = €;(hpy) = 0 from (3.13) since 7 < j(=n) .
(1.b) Case2. j=1i and l#n: hij = hyg = e(hyi) =0 from (3.13).
Therefore, (1.a) and (1.b) imply that (1) holds.

(2) (2.a) Casel. i,j,l,mare distinct : Without loss of generality, it suffices
to show that hji, = hijni = 0 and hyjim, = 0 for all ¢, 7, [, m such that 7, j, [, m <
n.

By using (1) of this Lemma, we easily see that

(3.17)
hijln = en(hijl) + Z hsjl wsi(en) + Z hisl Wsj (en) + Z hijs wsl(en) = 07

since i, j, [ < n and 4, j,! are distinct. And, from (2.5) and Lemma 3.1 we have

(3.18)  hijni = hijin + Z hsj Reini + Z Nis Rejni = hjj Rjint + his Rijng = 0.
S S

If 4, 5, I, m < n, then from (1) of this Lemma we can easily see

(319) hijlm = em(hijl) + Z{hsjl Wsj (em) + hisl Wsj (em) + hijs wsl(em)} =0.
s

From (3.17), (3.18) and (3.19), we complete the proof of (2.a)
(Qb) Case 2. j 7é [ : Let us show that hiijl = hjlii = hjjjl = hljjj = 0.
First, we show that h;;j; = hji;; = 0. Since j # [, one of {4, [} is not n. And

(3:20)  Puije = haitj + > hsi Raiji + 3 his Raiji = haitj + 2hii Riije = hiia;.
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Hence, we may assume [ # n. So, e;(hi;) = 0. Because h;;; = e;j(hy;) is also
constant on each orbit since h;; is constant on each orbit. Therefore, we have

(i) hiiji = er(hiiz) + Z heij wsi(er) + Z hisj wsi(er) + Z hiis wsj(er)
= 2hjij wji(er) — hiin wnj(er) = 0,

since hj;; = 0 if ¢ # n and wyj(e;) = (Ve,en, €;) = 0 from the first of (3.6).
And since j # [, from (2.5), Lemma 3.1 and (i) we also have

(if) hjiii = hijii = hiji+ Y hsj Raiti + > his Rajui

= hiiji + hjj Rjite + hii Rijii = 0.

Second, we show that hjj;; = hy;j; = 0. From (2.4), we have
(3.21) hjj = ei(hjj;) + Z hsjjwsj(er) + Z hjsjwsj(er) + Z hjjs wsj(er).

Hence, (3.21) and (1) of this Lemma give

3hjjn wnj(e if § #n,
(3.22) hijji = jinwnj(€r) iy f
el(hnnn) if J]=n.

Here,

wni(er) = (Ven,e;) =0 from(3.6) if 1 #mn,
(3.23) S —(en,Ve,€e;) =0 from (*) in Lemma 3.1 if [ =n,

e1(hpnn) =0 since hpny, is also constant on each orbit (I # j = n).
From (3.21), (3.22) and (3.23), we have
(iii) hjjji =0
and
(1) fjj; = hyjij = hijje+ > hej Rejis + O hjs Rajij = hyjji + 2hjj Rjju; = 0.
From (i), (ii), (iii) and (iiii), we complete the proof of (2.b) and Lemma 3.2. O

4. G-invariant Minimal Hypersurface in S°.

From now on, we assume that G ~ O(2) x O(2) x O(2) and M* is a closed
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G-invariant minimal hypersurface with constant scalar curvature in S°. Then by
differentiating ), h;; =0 and ), h2, = S with respect to e4 respectively, we have

(4.1) {h114 + haog + hazg + hasas = 0,

hi1hi14 + hoghooa + hashssa + haahasa = 0.

By differentiating (4.1) with respect to e4 respectively, we have

h h h h =
(4.2) { 1144 + h2244 + h3zaa + hagaa = 0,

> hiihiiaa + 32, By = 0.
Since e4(hjiaa) = hijaaa from (2.4), by differentiating (4.2) with respect to ey

respectively, we also have

h h h h =0
(4.3) { 11444 + 122444 + N33444 + N44444 )

> hiihiiaas + 337, hiiahiiaa = 0.
From (2.7), we have
(4.4) hiit1 + hiio2 + hiigs + hijaa = (4 — S)hy;.
Since S is constant, (2.8) and Lemma 3.2 give

(4.5) 33 hiy+ sy =S(S—4).
i#4

Now, by differentiating it once and twice with respect to e4 respectively, we have

(4.6) 32 iea Miia hijaa + hass hasas =0,
3324 hiia hiiaas + Paga hagsas + 330, 4 PFiag + higes = 0.

Moreover, if i # 4, from (2.4) we know

hiia = hiai = (haa — i) wai(e;),
(4.7) hiiii = 3hiiawai(es),
hasii = (haaa — 2hiia)wa, (€;).

And, if 7, j # 4 and i # j, then
(4.8)
hiijj = €j(hiig) + Y _{hsijwsi(e;) + hisjwsi(es) + hiiswsj ()} = hiia waj(eg)-
S

The following (4.9), (4.10) and (4.11) are needed to prove Lemma 4.1.
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If ¢ # 4, then (2.4) and Lemma 3.2 give
ea(haaii) = hasiia — Y {hsaiiwsa(es) + hasiiwsa(eq)
Fhassiwsi(es) + haiswsi(ea)} = haaiia,
hasas; = €¢(h444i) + Zs{hs44iws4(ei) + h4s4iws4(6i)
Fhassiwsa(ei) + hasaswsi(ei)} = (hagas — 3hagii)wai(e).
Furthermore, if 7 # 4, then (2.2) and (2.5), (4.7) give

(4.9)

Rigiq = Kigia + hiihag = 1+ hizhag = —Rygia,
(4-10) (h44u‘ - hn‘44) w4i(€i) = (h44 - hu)(]- + h44hu') w4i(ei)
= hiia(1 + haahis),
respectively. Here hygi4 = hgsq; = 0 by Lemma 3.2. And so (2.5) and (4.10) give
(4.11)
hagigi = €i(hasia) + higia wia(€q) + haiia wia(€s) 4 hasas wai(es) + haas wia(e;)
= €i(haaai) — hisaa wai(e;) — Niag wai(€i) + hagag wai(eq) + haas wia(e;)
= haaaii — hiaaq Wz'4(6¢) — haiai wz‘4(61) — haaii wz’4(ei) — ha4aa w4z’(6z’)
— hiiaa wai(e;) — hijaa wai(e;) + hagag wai(eq) + haaii wia(eq)
= hyaaii + 2(hagii — Piiaa) wai(e;)
= haaaii + 2hia(1 + haghii).

Hence, we have the following lemma that is needed to prove our Theorem.

Lemma 4.1. Ifi # 4, then
(4.12) Riigas = haaaii + (5 + 6hiihag — hig)hiia — (2 + 3hiihas — h3)haaa.

Proof. By using (4.9), (4.10) and (4.11), we have

hiiaaa = es(hiiaa) + Z{hsi44wsi(e4) + hisaawsi(ea) + hijsawsa(ea) + hijaswsa(ea)}

= e4(hiiaa)
= eq{haaii + (his — haa)(1 + hyihaa)}
= haaiia + (hiia — haaa)(1 + hishaa) + (his — haa)(hiiahaa + hiihaas)
= haaiai + Riai Rigia + haiiRigia + haaaRasia
+ (hiia — haaa)(1 + hiihaa) + (his — haa)(hiiahas + hiihaaa)
= haaais + 2hia(1 + haghi) + (2hi4 — haaa) Rigia
+ (hisa — haaa) (1 4 hishas) + (hii — haa)(Rsiahas + hiihaaa)
= hagaii + (5hiza — 2haaa) (1 + hizhaa) + (hishas — h3g)hiia + (3 — hiihaa)haaa
= huaai; + (5 + 6hjihas — hiy)hia — (2 + 3hihag — h;)haa
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and it completes the proof of Lemma 4.1. O

For the sake of simplicity, we sometimes let h;; = A; from now on throughout
this paper. To prove our Theorem we need another lemmas.

Lemma 4.2. Suppose h;; = hyg = A at some point p for i =1, 2 or 3. Then,

12t 4N

(4.13) S ="

Proof. Without loss of generality, we can assume hs3 = hqyy = A at some point p.
Then (4.7) implies hgga(p) = 0. Together with (4.7) and (4.8), it implies

(4.14) hssi1 = hazze = haszs =0,  at p.

Hence, (4.4) and (4.14) imply

(4.15) hszas = (4 — S)hss, atp

and (2.5) implies

(4.16) haazs = hazaa + (haa — ha3)(1 + hashss) = hazaa,  at p.
In the equation (2.9), >, ; hZ;3 =0 at p. Hence, we have

(4.17) hi1hi133 4 hog hooss + has hasss + hag hyazs =0,  at p.
By using (2.5) and (4.14) we know, at p

(4.18) {h1133 = haz11 + (hir — N (1 +hit A) = (A — A)(1+ A1 N),

haoss = hazoa + (haga — A)(1+ haa A) = (Ao — A)(1 4+ A N).

Hence, (4.17) and (4.18) imply

(4.19) MO =T FAN) F A =N+ XN +A4-S)A=0.
Here, since
(4.20) AMAX+20=0, A2+ A3+2\2 =5, A\ Ay =3)2 -2,
’ A3 A3 = (A2 403 — A A) (A + o) = 10A3 — 35X,

(4.19) becomes
S +4X% +12)\* —58)\% =0,
and so,

122t 44N

5 A2 —1
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It completes the proof of Lemma 4.2. O

The following Lemma 4.3 and Lemma 5.1 are proved in the same methods as
in our early paper [7].

Lemma 4.3. If M* has 2 distinct principal curvatures at some point, then S = 4.

Proof. Suppose M* has 2 distinct principal curvatures at some point, say, p. With-
out loss of generality, we can assume either one of the following three cases for some
A#£O:

Case 1. Suppose hos = hzz = hys = XA and hy; = —3X at p . Then

(4.21) S = h}; + h3y + h3s + hi, = 1207

Hence, (4.13) and (4.21) imply S = 4, i.e., M* = S'(\/1/4) x S3(1/3/4).
Case 2. Suppose hll = h22 = —)\7 h33 = h44 = \at p. Then

(4.22) S = h3, + h3y + h3; + hi, = 422

Hence, (4.13) and (4.22) imply S = 4, i.e., M* = S%(,/1/2) x S%(1/1/2). But, it
is not G-invariant.

Case 3. Suppose hi; = hoo = hgs = A and hyy = —3X at p. Then from (3.12),
we have at p

df tanfd do t0 d in2r do
(4.23) cosr — + ?:m ar_ . cot o ar sin® r
ds sinr ds

0ST — — — = — —.
ds sinr ds cosr ds

From (4.23), we have
(4.24) — =0 and — =0,
s s
which means that hi; = hos = hss = hggs = A = 0 at p. It is contrary to the

hypothesis and completes the proof of Lemma 4.3. O

Lemma 4.4. If S >4 and i =1, 2, 3, then
(1) for each i, there exists a point q; in M such that hi;(¢;) =0 and
(2) for all i, hyy # hy anywhere.

Proof. (1) Suppose that the conclusion is not valid. Without loss of generality, we
can assume that hszs > 0 everywhere. Consider a point pg, such that

(425) hgg(po) = I]I\}Ili’l hss > 0.

Then, due to the maximal principle, we have

(4.26) 64(h33)(p0) = h334(p0) =0 and Hess. h33(€4, 64)(])0) Z 0.
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Now, we have

(4.27) Hess. hs3(ea, e1) = (eseq — Ve, eq)(h3z) = hggaa — Zw4s(€4)h335 = h3344.

Here, since hgzs(po) = 0, by using (4.7) and (4.8) we have at pg
h3si1 = haz2e = hazss =0

and so,

(4.28) h3saq = (4 — S)hss.

From (4.26), (4.27) and (4.28), we have

h3344 = (4 — S)h33(po) > 0,
which is contrary to the hypotheses that S > 4 and hss(pg) > 0.
(2) Suppose the conclusion is not valid. Without loss of generality, we can
assume that hgz = hyqy = X at some point p. Then since S > 4, it follows h11, hos, A

are distinct at p by Lemma 4.3 and A # 0 by Lemma 4.2. From now on, all
computations are performed at p. (4.7) gives hszs = 0. From (4.2), we have

(4.29) hi144 + hooas + hazas + hasss = 0,
A1 hi1aa + A2 hooas + AN hasas + Nhagas = —h3y — h30s — hisy.

It follows that
(4.30) (A= A1) harag + (X = A2) hooaa = hiyy + h3gy + higy.
Here, from (2.5) and (4.7) we have

hi1as = haair + (h11 — haa)(1 + hiihaa)

= (hgaa — 2h114)war(e1) + (A1 = A)(1 4+ A N)

= (haaa — 2h114)h11a/ (N = A1) + (A = ) (1 + A A),
hazas = haazo + (haz — haa)(1 + hazhas)

= (h4as — 2ho24)waz(e2) + (A2 — A)(1 + A2))

= (haaa — 2ha24)ha2a/ (A — Aa) + (A2 — A) (1 + A2N).
Hence, by using (4.1) and (4.31) we have

LHS of (430) = ()\ — )\1) h1144 + ()\ - )\2) h2244
= haaa(hara + haoa) — 28314 — 2h355 — {(Ar = )P (1+ XA) + (A2 = A)?(1 4+ AN}
= —hiyq — 20314 — 2h35, — {(A1 = A)?(1+ M) + (A2 — A (14 A2N)}

= *h42144 - 2}1%14 - 2h§247

(4.31)
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since

AL = X214+ AN 4+ (Ao — N)2(1+ A2N)
=X N2 207 200 F M)A+ (A E AN =207 +AD)A2 + (A + A)N\3
=S +402+1224 —55\2 =0

by using (4.20) and Lemma 4.2. Hence, from (4.30) and (4.5) we obtain
0= 3hiyy + 3h3s + 2034 = S(S — 4) + hiyy.

It contradicts to the hypothesis that S > 4 and completes the proof. O

5. Proof of Our Theorem

From Lemma 4.3, we know that if S < 4, then S = 4. Moreover, Lemma 4.3
says that if S > 4, then M* does not have 2 distinct principal curvatures anywhere.
Therefore, if S > 4, then M* must have simple principal curvatures everywhere or
3 distinct principal curvatures at some point. To prove our Theorem, it suffices to
show that if S > 4, then M* does not have simple principal curvatures everywhere
and 3 distinct principal curvatures anywhere.

Lemma 5.1. If S > 4, then M* does not have simple principal curvatures every-
where.

Proof. Suppose that M* has only simple principal curvatures everywhere. Then
since all principal curvatures h;;’s are constant on each orbit, without loss of gen-
erality we can assume everywhere either one of the following three cases:

(1) hi1 < haa < h3z < hua,
(2) h11 < haa < hyg < hgs,
(3) hgs < h11 < hog < hg3s.
Now, from (1) of Lemma 4.4 we know there exist points ¢; and g3 in M* such
that h11(g1) = 0 and hs3(g3) = 0 respectively. Hence the above each case is contrary
to the fact that

hi1(q1) + ha2(q1) + has(q1) + haa(q1) = 0 or
hi1(q3) + ha2(gs) + has(g3) + haa(gs) = 0.

Therefore, M* does not have simple principal curvatures everywhere. O

Lemma 5.2. If S > 4, then M* does not have 3 distinct principal curvatures
anywhere.
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Proof. Suppose that M* has 3 distinct principal curvatures at some point p. Then
by (2) of Lemma 4.4, without loss of generality we may assume that A\; = Ag = A
and A, A3, A4 are distinct at p. All computations are performed at p. From (4.1),
we have

(5.1) hi1a + haoa + h3ga + haaa =0,
Ahi1a + Ahaoa + A3 haza + Ag haaa = 0.

Let h114 = bhaoy for some real number b. Then, (5.1) becomes

(5.2) {(1 +b) hooa + haga + haaa =0,

(1 +b)Ahoas + A3 hazs + Ay haay = 0.

It follows that

(5.3)

hiia = ()\4 - /\3) ab, haoa = ()\4 - >\3) a,
haza = (A=A a(l+Db), haaa= (A3 —A)a(l+b)

for some real number a. Here since S > 4, a # 0 from (4.5).
Now (2.5) implies

(5.4) hss11 — h11ss = (A3 — A) (1 + A3 A) = hazaa — hooss.
And, (4.8), (4.7) and (5.3) imply
hazi1 — hiizzs = haza w41(61) — hi14 w43(€3)

= hggah11a/(Aa — A) — hi1a haza /(Mg — A3)

=(A3— )\)aQb(l +b),
h3z2a — hoozs = hasa w42(€2) — haga w43(63) = (>\3 - /\)az(l + b)-

(5.5)

Hence, from (5.4) and (5.5) we get

(5.6) Az = N)a?b(1+b) = A3 = A)(1+A3)) = (A3 — N\)a?(1+b)
and so,
(5.7) b=—-1 or b=1.

To prove our Lemma 5.2, it therefore suffices to show that b # —1 and b # 1.
Case 1. In the case b= —1: (5.6) implies (A3 — A)(1 + Az A) =0, i.e.,

(5.8) X #0, Agz%l and )\4:§—2>\.
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Hence,

2
(5.9) S:2A2+/\§+)\§:6)\2+F74.

From (5.3) and (4.7), we have

(5.10)  hi1a = —haza,  haza = haas =0, wai(e1) = —waz(e2), wasz(es) =0.
Hence, from (4.5) and (5.10) we have

(5.11) 6h3,, = S(S —4).

Let hijawai(e1) = c¢. Then, by using (4.7) and (5.8) we have

h3 h3, )\
(5.12) cAs—N) =h%, andso c= N 1i4)\ =7 ilé)@'

Moreover, by using (4.7), (4.8), (4.4) and (5.10) we also have

hiin =3¢,  hize=—c¢, hiiz3 =0, hia=(4—-5)A—2c,
(5.13> hao11 = —c,  ha2e = 3c, hoozs =0, hooyy = (4 - S)>\ — 2¢,

h3s11 =0, h3322 =0, hazzz =0, hgzas = (4—95)As,

haarn = —2¢, hagor = —2¢, haazz =0, hagas = (4 — S)\s + 4e.

Now, we can not draw anymore here and have to appeal to covariant derivatives
of h up to the third order.

We compute 6hi14h11444 in Step 1 and Step 2 respectively by using different
ways, and show that in Step 3 they are not equal mutually to prove b # —1.

Step 1. First we compute 6hi14h11444 by using one way. From (4.9), (4.12)
and (5.10), we have

(5.14) hasazs =0, h3zaaa = haaass, and so, hzzaaa = 0.

Since hi144 = ho24q from (5.13), by using (4.3), (5.10) and (5.14) we have

h h h =0
(5.15) { 11444 + 122444 + N44444 )

Ahi144a + Ah22444 + Aahagasq = 0.
If follows that
(5.16) hi1a44 = —ho2aas  and  haga4q = 0.
Hence, from (4.6), (5.10) and (5.16) we obtain

(5.17) 6h11ah11aaa = —6hi1 44 — 3h3z4y — Pigaa-
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(5.1

(5.1

(5.1

Jae-Up So
Step 2. Second we compute 6h114h11444 in another way. From (4.12), (4.9) and

0), we also have

8) 6h114h11444 = 6h11ahaaa11 + 6(5 + 6hy1has — h3,)hioy
= 6(h4444 — 3h4411)€ + 6(5 +6A Mg — Aézl)h%14

Step 3. We must show that (5.17) # (5.18). Suppose (5.17) = (5.18). Then

9) 6h34y + 3h3s0s + h3gss + 6(hagas — Shagii)c +6(5+6A Ay — A2)h3, = 0.

By using (5.11), (5.13) and the fact that S — 4 # 0, (5.19) becomes

(5.2

Let

(5.2

Sub

(5.2

0)
9 9 9 9 100¢?
(S —4)(6A% + 305 + A]) + (24X — 14Xy)c + S(5+ 6A g — \]) + 10
A? = t. Then, by using (5.8), (5.9), (5.11) and (5.12) we have
2
§=06t+2 -4, (S —4)t=2(3t—1)(t—1),
K2, S(S—4)A S(S —4)t
c= = , A= ———,
M—A 6(1—3t) 6(1 —2375)
1 1
1) 6)\2+3>\§+)\i:6)\2+3ﬁ+ ()\—2)\> =28 — 2t + 4,
—4)t
(24X — 140y)c = —14(Ag — N)c + 10Ac = fzS(S —4) + M,
3 3(1 - 3t)
1
546X — A = —(3\%2 + 2 —2)—13\2 +13 = —g — 13t +13.

stituting (5.21) to (5.20), we have

2) (55t — 85)S8% — (990t% — 1500t + 390)S + 432t* — 1008t 4 288 = 0.

By eliminating S from the above two equations (5.21) and (5.22), we have

(5.2

3) 990t> — 1923t* + 1262t> — 1422 — 200t + 85 = 0.

Here, since S =6t + 2/t —4 >4, we have 0 <t < 1/3 or ¢t > 1.
For all ¢ such that 0 < ¢ < 1/3,

LHS of (5.23) = 990t° — 1923t* + 1262t3 — 142t> — 200t + 85

= 110(1 — 3t)%t> + 421(1 — 3¢)t* + 16(1 — 3t)(1 + 3t) + 67(1 — 3t)
+ 73183 26> 4t +2 > 0.
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Moreover, for all ¢ such that ¢ > 1

LHS of (5.23) = 99015 — 1923t* 4+ 1262t> — 142t* — 200t + 85
=962(t — 1)%3 + 100(t — 1) + 242(t — 1)£* + 15(t* — 1)
+ 28t + t* + 43t° > 0.

Hence, there is no a root of the equation (5.23). It follows that b # —1.
Case 2. In the case b=1: From (5.3) and (4.7), we have
(5.24) { hi1a = haos = (M — A3) @, haza = 2(A — M)a, hass = 2(A3 — N)a,
wai(e1) = waz(ez) = hi1a/(As — A),  was(es) = haza/(Aa — A3)
and from (4.5) and (5.24), we also have

(5.25) S(S —4) = 3h3 4 + 3h3oy + 3h3gy + hiyy
= {6(As — X3)2 + 1201 — M\)2 +4(X3 — N)?} a2
We compute hji44 in Step 1 and Step 2 respectively by using different ways,

and show that in Step 3 they are not equal mutually to prove b # 1.
Step 1. First we compute hi144 in one way. Now, (4.4), (4.7) and (5.24) give

(5.26) hi1aa = (4 = S)X — hi111 — h1122 — ha13s
= (4= S)A — h11a{3wai(e1) + waz(e2) + was(es)}
2
S S TSV YO G V)

A — A
Step 2. Second we compute hii144 by using another way. Here,
hooaa = (4 — S)A — hoga{wai(e1) + 3waa(e2) + waz(es)} = hi1aa.
Hence, (4.2) and (4.6) imply a system of equations:
2hi144  +  hzzas  +  haaas =0,

(5.27) 2Ahi144 + A3 hazas + Aghgaas = —8Sd?,
6h114 h1144 + 3h334 h3zaa + hasa hassa = 0,

since
2h3 14 + h3zq + hisy = {200 — A3)” +4(A — M)? +4(Xs — N)?}d®
= {8A% +8A] +8A] — 2(A3 + A + 2XA3M\4) — 8A(A3 + \4)}a?
=8(2\% + A\ + A\%)a? = 85 a®.
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By using (5.24) and (5.25), from the system (5.27) of equations we also compute

8(h4asa — 3h3zs)Sa?
6h114(/\4 — )\3) + 3h334(2)\ — 2)\4) + h444(2)\3 — 2)\)
_ 8(hgaa — 3h334)5a3 _ 32\ —3)) 4
TRl 303+ My S—4

(5.28) h1144 =

Step 3. We want to show that (5.26) # (5.28). From (5.6), we have
(5.29) 14+ X3\ = 2d°
Case 2 — 1. Suppose that A = 0. Then, it follows from (5.29) that
(5.30) ¥ =5, M=—Xs #0 and S =2\
Hence, (5.30) and (5.25) imply

4 Mg — A3)?
(5.26) = (4 — S)A — %cﬁ +2(\ — N)a? = =T\
3200 —3)) 4, 320 —3MNS , 64x3 , 4
28) = - _ ~ 2y,
(5.28) s—4 ° Sis—1) @ T a2 M

Hence, (5.26) # (5.28), and so b # 1.

Case 2 —2. Suppose A # 0 and (5.26) = (5.28). Then, we have

4(Ag — A3)? 5 o 32(M\ —3)) 4
6310 (== T o - N = F P o

Let A2 =t and 2a? — 1 = u. Then, from (5.29) we have

2

- 2
U g, 5:2/\2+)\§+)\ﬁ:6t+%+4u.

A
to (5.25) and (5.31), respectively, we obtain

(532) )\3 =7, /\4 =

— >|e

Substituting (5.32

ut —tud — (462 + Tt)u? — (5¢3 4 18t2)u + (9t* — 23t3) = 0,
(5.33) 5u’ + (14t + 7T)ut + (28t% + 26t)u> + (413 + 1242 — 10t)u>
—(93t* — 22213 — 4t?)u — (541> — 69t — 38t3) = 0.
To find such pairs of numbers ¢, u that satisfy the above system (5.33) of equations,
let us eliminate u. First, by eliminating u® and u* from (5.33), we have
(5.34) (67t + 68)u> + (105t + 375t + 39)u? + (—43t> + 714¢> 4 130t)u
— (225t — 443t — 199t%) = 0.
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{(5.34) x u} and (5.33) imply

(5.35) (172t% + 443t + 39)u® 4 (225t + 1455t% 4 606t)u?
+ (110t* 4 1989t + 1423t%)u — (603> — 929t* — 1564t%) = 0.

{(5.34) x (1722 + 443t + 39) — (5.35) x (67t + 68)} = 3 becomes

(5.36) (995t* — 590t> + 12462t% — 3102t 4 507)u?
= (4922t° 4 12328t* — 354641 + 3776t* — 1690t)u
— 56715 + 1490615 — 17914t* + 306t> — 2587t

Second, (5.34) x (995t* — 590¢% + 12462t> — 3102t + 507) and (5.36) give

(5.37) (67t + 68)u{(4922t° 4 12328t* — 35464t> 4 3776t> — 1690t )u
— 567t% + 1490615 — 17914t* + 306t — 2587¢%}
+ (105t + 375t + 39){(4922t° + 12328t* — 35464t + 3776t — 1690t)u
— 567t5 + 1490615 — 17914t* 4 306t> — 25872}
+ (—43t3 + 71442 + 130t) (995t* — 590¢° + 12462t — 3102t + 507)u
— (225t* — 4433 — 199t2)(995t* — 590> + 12462t* — 3102t + 507) = 0.

Here, (5.37) = 2t(67t 4 68) becomes

(5.38) (2461t* + 6164t> — 17732t% + 1888t — 845)u?
+ (3254¢° + 32788t* — 32704t% — 1620t* — 5174t)u
+ (—2115¢° + 16520t° — 10652t* + 10788> — 9933t%) = 0.

Third, (5.38) x (995t* — 590¢% + 12462t% — 3102t + 507) and (5.36) give

(2461t* + 6164t° — 17732t% 4 1888t — 845){(4922t° + 12328t* — 35464¢>
+ 3776t% — 1690t)u — 567t5 + 14906t5 — 17914t* + 306t> — 2587t%}
+ (3254t° + 32788t* — 32704t% — 162012 — 5174t)(995t* + - - - + 507)u
+ (—2115¢° + 16520t° — 10652t* + 10788> — 9933t%)(995t* + - - - + 507) = 0.

And dividing the above equation by 4t(67t 4+ 68) we obtain

(5.39) (57279t" + 2828465 — 697135¢> + 698506t* — 129559t> — 69294¢>
+ 36855t — 4394)u = (13059t" — 203082t° + 164525t°
+ 376306t — 906107¢* + 494522> — 124805t + 10478)¢.
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In the same way as above, (5.36) x (572797 + --- — 4394) and (5.39) imply an
equation. And dividing the equation by (995t* + - - 4+ 507) we also obtain

(5.40) (13059t” — 2030825 + 164525¢° 4 376306t* — 906107t + 494522t
— 124805t + 10478)u = (31959t — 126930t° + 9599935
— 2470086t* 4 2650385t% — 1084542t% + 226831t — 12506)t.

Last, using (5.39) and (5.40) we obtain an equation in which u is eliminated and
dividing both sides of the equation by 32(995t* + --- 4+ 507) we obtain

(5.41) 52137t + 253062t° — 20335085 + 5141910t — 71346185
4 6230014t° — 3591608t* + 1378538t> — 343231t + 50684t — 3380
= (t —1)%(3t — 1)%(5793t5 + 43566t> — 123930* + 139498¢*
— 7T9719t> 4 23644t — 3380) = 0.

From (5.39), (5.40) and (5.32), we see that if t = 1 or %, then u = —1 and S = 4.
But since S > 4, we know ¢ # 1 and ¢ # %. Hence, from (5.41) we have an equation

(5.42) 57935 + 4356615 — 123930t + 139498> — 79719t + 23644t — 3380 = 0.
Let

f(t) = 57935 + 4356615 — 123930t* + 139498> — 79719t + 23644t — 3380.
Then, we have

f/(t) = 34758° + 217830t* — 495720t + 418494t — 159438t + 23644,
f(t) = 6(28965t* + 145220% — 247860t + 139498t — 26573),
() = 6(115860t> + 435660t% — 495720t + 139498)
= 6(28965¢ + 131172)(2t — 1)? + 6(26832t> + 3t + 8326) > 0.

Since f"'(t) > 0 for all t > 0, f” is increasing. And since f”(0) < 0, there is only
one real number « (5/12 < o < 1/2) such that f”(a) = 0. That is, f’ has only one
local minimum at «. For the «,

f(a) = 34758a° + 217830 — 4957200° + 418494a? — 159438 + 23644

6
= (50‘ - 1) (28965a* + 1452200 — 24786002 + 139498a — 26573)

2 3
+ 72531 — 53068a> + 323602 + 11947a — 2929 + 3042 +za

2 3
= 72531a* — 530680 + 323602 + 11947 — 2929 + goﬁ +za

> (805902 — 524 — 886)(3a — 1)? + (2a + 11) (ar — 1)% + 7175 — 2054 > 0,
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since 805902 — 524a — 886 > 0 and 7175 — 2054 > 0. Hence f’(t) > 0 for all
t > 0, and so f is increasing. It implies that the equation (5.42) has only one
root B (= 0.654) between 3/5 and 2/3, since f(3/5) < 0 and f(2/3) > 0. Since
S = 6t + 2u?/t + 4u > 4, we have

u? 4 2tu + 32 — 2t > 0
and for the root t = 8 we also have
u? 4+ 2Bu + 36% — 28 > 0.

Hence, we have

(5.43) u<—8—+28(1-8) and wu>-—-8++/28(1—0).

In fact, since 3/5 < 8 < 2/3 we have

(5.44) —B—12B(1—B)<—1 and —fB++/28(1—f)>0.

Since u = 2a? — 1 > —1, from (5.43) and (5.44) we need at least that u > 0. But
from (5.39) and (5.40) we can compute that u ~ —1.12 < 0 . Therefore there is no
a pair t, u satisfying (5.33) such that t > 0, t # %, t # 1 and u > 0. That is, it
follows that b # 1, which completes the proof of Lemma 5.2. O

We completes the proof of our Theorem by Lemma 5.1 and Lemma 5.2.
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