• Title/Summary/Keyword: G-PEDOT/PSS

Search Result 18, Processing Time 0.027 seconds

Preparation and Characterization of PEDOT/PSS Hybrid with Graphene Derivative Wrapped by Water-soluble Polymer (수용성 고분자로 Wrapping된 그래핀 치환체와 PEDOT/PSS 복합체의 합성 및 특성)

  • Park, No Il;Lee, Seul Bi;Lee, Seong Min;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.581-585
    • /
    • 2014
  • We conducted investigation on the hybridization of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT : PSS) with graphene derivative (G-PSS), which has been prepared by wrapping reduced graphene oxide (RGO) with PSS. In situ polymerization of PEDOT/PSS in the presence of G-PSS afforded the PEDOT/PSS and graphene hybrid (GP). The analysis of XPS, IR and Raman spectroscopies for GP showed that PEDOT/PSS was successfully synthesized and hybridized with graphene. Compared to the G-PSS, GP showed an enhanced electrical conductivity of $4.46{\times}10^2S/m$ with a good wter-dispersity.

Preparation of Antistatic Coating Solutions by Blending Aniline Terminated Waterborne Polyurethane with PEDOT/PSS (Aniline Terminated Waterborne Polyurethane과 PEDOT/PSS의 블렌딩에 의한 대전방지 코팅용액의 제조)

  • Hong, Min Gi;Huh, Woo Young;Byun, Tae Gang;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.614-620
    • /
    • 2012
  • Polyurethane prepolymers were prepared from poly (carbonate diol), isophrone diisocyanate and dimethylol propionic acid. Then, aniline terminated waterborne polyurethane dispersion (ATPUD) was synthesized by capping the NCO group of the prepolymer with aniline monomer. Subsequently, ATPUD and waterborne polyurethane dispersion (PUD), respectively, were blended with conducting polymer, poly (3,4-ethylenedioxythiophene)/polystyrene sulfonate [PEDOT/PSS], to yield antistatic coating solutions, and the mixture was coated on the polycarbonate substrates. At adequate addition amounts of PEDOT/PSS less than or equal to 2.5 g, the surface resistances ($1.0{\times}10^{11}{\sim}2.5{\times}10^8{\Omega}/cm^2$) of coating films from ATPUD showed better electronic conductivities than those ($5.0{\times}10^{11}{\sim}6.3{\times}10^9{\Omega}/cm^2$) from PUD. However, at excess amount of PEDOT/PSS of 3.0 g, the surface resistance from ATPUD showed similar electronic conductivity with that from PUD.

PEDOT:PSS Enhanced Electrochemical Capacitive Performance of Graphene-Templated δ-MnO2

  • Sinan, Neriman;Unur, Ece
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.50-59
    • /
    • 2020
  • Birnessite-type manganese dioxide (δ-MnO2) with hierarchical micro-/mesoporosity was synthesized via sacrificial graphene template approach under mild hydrothermal conditions for the first time. Graphene template was obtained by a surfactant (cetyltrimethylammonium bromide, CTAB) assisted liquid phase exfoliation (LPE) in water. A thin PEDOT:PSS (poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate)) layer was applied to improve electrical conductivity and rate capability of MnO2. The MnO2 (535 F g-1 at 1 A g-1 and 45 F g-1 at 10 A g-1) and MnO2/PEDOT:PSS nanocomposite (550 F g-1 at 1 A g-1 and 141 F g-1 at 10 A g-1) delivered electrochemical performances superior to their previously reported counterparts. An asymmetric supercapacitor, composed of MnO2/PEDOT:PSS (positive) and Fe3O4/Carbon (negative) electrodes, provided a maximum specific energy of 18 Wh kg-1 and a maximum specific power of 4.5 kW kg-1 (ΔV= 2 V, 1M Na2SO4) with 85% capacitance retention after 1000 cycles. The graphene-templated MnO2/PEDOT:PSS nanocomposite obtained by a simple and green approach promises for future energy storage applications with its remarkable capacitance, rate performance and cycling stability

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

Performance Characteristics of Polymer Photovoltaics using Dimethyl Sulphoxide incorporated PEDOT:PSS Buffer Layer

  • Park, Seong-Hui;Lee, Hye-Hyeon;Jo, Yeong-Ran;Hwang, Jong-Won;Gang, Yong-Su;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.238-239
    • /
    • 2010
  • Dimethyl sulphoxide (DMSO) is one of the widely-used secondary dopants in order to enhance the conductivity of poly(3, 4-ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) film. In this work, we investigated the effect of DMSO doping in to PEDOT:PSS on the electrical performance of the bulk heterojunction photovoltaics consisting of poly(3-hexylthiophene-2, 5-diyl) and phenyl-C61-butyric acid methyl ester. Correlation between the power conversion efficiency and the mechanism of improving conductivity, surface morphology, and contact properties was examined. The PEDOT:PSS films, which contain different concentration of DMSO, have been prepared and annealed at different annealing temperatures. The mixture of DMSO and PEDOT:PSS was prepared with a ratio of 1%, 5%, 15%, 25%, 35%, 45%, 55% by volume of DMSO, respectively. The DMSO-contained PEDOT:PSS solutions were stirred for 1hr at $40^{\circ}C$, then spin-coated on the ultra-sonicated glass. The spin-coated films were baked for 10min at $65^{\circ}C$, $85^{\circ}C$, and $120^{\circ}C$ in air. In order to investigate the electrical performance, P3HT:PCBM blended film was deposited with thickness of 150nm on DMSO-doped PEDOT:PSS layer. After depositing 100nm of Al, the device was post-annealed for 30min at $120^{\circ}C$ in vacuum. The fabricated cells, in this study, have been characterized by using several techniques such as UV-Visible spectrum, 4-point probe, J-V characteristics, and atomic force microscopy (AFM). The power conversion efficiency (AM 1.5G conditions) was increased from 0.91% to 2.35% by tuning DMSO doping ratio and annealing temperature. It is believed that the improved power conversion efficiency of the photovoltaics is attributed to the increased conductivity, leading to increasing short-circuit current in DMSO-doped PEDOT:PSS layer.

  • PDF

Stretchable Current Collector Composing of DMSO-dopped Nano PEDOT:PSS Fibers for Stretchable Li-ion Batteries (신축성 리튬이온전지를 위한 DMSO 도핑 PEDOT:PSS 나노 섬유 집전체)

  • Kwon, O. Hyeon;Lee, Ji Hye;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.93-99
    • /
    • 2021
  • In order to decrease the weight of stretchable energy storage devices, interest in developing lightweight materials to replace metal current collectors is increasing. In this study, nanofibers prepared by electrospinning a conductive polymer, PEDOT:PSS, were used as current collectors for lithium ion batteries. The nanofiber showed improved electrical conductivity by using DMSO, a dopant, and indicated a stretch rate of 30% or more from the elasticity evaluation result. In addition, the use of the nanofiber current collector facilitates penetration of the liquid electrolyte and exhibits the effect of increasing the electronic conductivity through the nanofiber network. The lithium-ion battery using the DMSO-doped PEDOT:PSS@PAM nanofiber current collector indicated a high discharge capacity of 135mAh g-1, and indicated a high capacity retention rate of 73.5% after 1000 cycles. Thus, the excellent electrochemical stability and mechanical properties of conductive nanofibers showed that they can be used as lightweight current collectors for stretchable energy storage devices.

Contact resistance extraction between Ink-jet printed PEDOT-PSS and Pentacene in OTFTs

  • Kim, Myung-Kyu;Kang, Rae-Wook;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.654-656
    • /
    • 2008
  • We enhanced the conductivity of PEDOT-PSS by mixing with glycerol and fabricated the low contact resistance of source and drain[S/D] electrodes of OTFT with PEDOT-PSS by ink-jetting printing. The contact resistance was much smaller by seven times than Au with $200k{\Omega}$ at $V_G=-5V$. For the bottom contacted OTFTs, the performance was comparable to OTFTs with Au electrodes with the field effect mobility of $0.2\;cm^2/V s$.

  • PDF

Preparation and Characterization of Conducting Polymer Nanocomposites Including Graphene Oxide via In-situ Chemical Polymerization (제자리 화학중합을 통한 그래핀 옥사이드를 포함하는 전도성 고분자 나노복합체의 제조와 특성 분석)

  • Jeong, Yeonjun;Moon, Byung-Chul;Jang, Min-Chae;Kim, Yangsoo
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2014
  • Nanocomposites including graphene oxide (GO) and conducting polymers (PPy, PANI and PEDOT) were prepared via an in-situ chemical polymerization process, and their characteristic properties depending upon the change of conducting polymer (CP) content were analyzed. A confirmation was made on not only the functional groups formed in GO but also the presence of CP existent in the nanocomposites. The molecular interaction between GO and poly(4-styrene sulfonic acid) (PSSA) or CP in the nanocomposites was proposed. With the increase of PEDOT content in the GOPSS/PEDOT nanocomposite, the estimated value of $I_D/I_G$ regarding the Raman analysis of them was decreased and a major change of their Raman spectra characteristic peaks was observed. In the GO-PSS/PEDOT nanocomposite, PEDOT molecules made an exfoliation of GO-PSSA layers and thus they were intercalated among layers. Such a unique molecular morphology induced the highest electrical conductivity for the GO-PSS/PEDOT nanocomposite among three kinds of nanocomposites prepared in this study. It is also noted that the uniform morphology confirmed in this study helped a thermal stability improvement in the nanocomposite due to the presence of GO or GO-PSSA acting as a thermal barrier.

전극의 패턴에 따른 유기 광기전력 소자의 전기적 특성

  • Mok, Rang-Kyun;Lee, Won-Jae;Song, Min-Jong;Han, Wone-Keun;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.184-184
    • /
    • 2010
  • ITO의 전극 패턴에 따른 유기 광기전력 소자의 전기적 특성에 대해서 연구하였다. 소자의 구조는 ITO/PEDOT:PSS(90nm)/CuPc(20nm)/$C_{60}$(40nm)/LiF(0.5nm)/Al(100nm)이고, PEDOT:PSS는 스핀 코팅한 후 $120^{\circ}C$에서 20분간 건조시켰으며, 유기물은 열증착을 하여 제작하였다. ITO 전극의 패턴을 corss-bar type과 island type으로 하여 소자의 특성을 비교하였다. 광원은 500W xenon lamp를 사용하였고, optical density filter로 광원의 세기를 조절하였으며, AM 1.5G의 스펙트럼을 조사하였다. PEDOT:PSS 층을 사용함으로서 유기 광기전력 소자의 효율, 단락 전류, 그리고 개방 전압의 향상을 얻을 수 있었다. ITO 전극 패턴에 따른 광기전력 소자의 특성은 cross-bar type에 비하여 island type의 구조에서 유기 광기전력 소자의 효율이 34% 감소하였다.

  • PDF

Development of Spray Thin Film Coating Method using an Air Pressure and Electrostatic Force (공압과 정전기력을 이용한 스프레이 박막 코팅 기술 개발)

  • Kim, Jung Su;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.567-572
    • /
    • 2013
  • In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.