DOI QR코드

DOI QR Code

Preparation and Characterization of Conducting Polymer Nanocomposites Including Graphene Oxide via In-situ Chemical Polymerization

제자리 화학중합을 통한 그래핀 옥사이드를 포함하는 전도성 고분자 나노복합체의 제조와 특성 분석

  • Jeong, Yeonjun (Department of Nanoscience and Engineering, High Safety Vehicle Core Technology Research Center, Inje University) ;
  • Moon, Byung-Chul (Department of Nanoscience and Engineering, High Safety Vehicle Core Technology Research Center, Inje University) ;
  • Jang, Min-Chae (Department of Nanoscience and Engineering, High Safety Vehicle Core Technology Research Center, Inje University) ;
  • Kim, Yangsoo (Department of Nanoscience and Engineering, High Safety Vehicle Core Technology Research Center, Inje University)
  • 정연준 (인제대학교 나노공학부, 고안전차량핵심기술연구소) ;
  • 문병철 (인제대학교 나노공학부, 고안전차량핵심기술연구소) ;
  • 장민채 (인제대학교 나노공학부, 고안전차량핵심기술연구소) ;
  • 김양수 (인제대학교 나노공학부, 고안전차량핵심기술연구소)
  • Received : 2013.09.26
  • Accepted : 2013.11.08
  • Published : 2014.03.25

Abstract

Nanocomposites including graphene oxide (GO) and conducting polymers (PPy, PANI and PEDOT) were prepared via an in-situ chemical polymerization process, and their characteristic properties depending upon the change of conducting polymer (CP) content were analyzed. A confirmation was made on not only the functional groups formed in GO but also the presence of CP existent in the nanocomposites. The molecular interaction between GO and poly(4-styrene sulfonic acid) (PSSA) or CP in the nanocomposites was proposed. With the increase of PEDOT content in the GOPSS/PEDOT nanocomposite, the estimated value of $I_D/I_G$ regarding the Raman analysis of them was decreased and a major change of their Raman spectra characteristic peaks was observed. In the GO-PSS/PEDOT nanocomposite, PEDOT molecules made an exfoliation of GO-PSSA layers and thus they were intercalated among layers. Such a unique molecular morphology induced the highest electrical conductivity for the GO-PSS/PEDOT nanocomposite among three kinds of nanocomposites prepared in this study. It is also noted that the uniform morphology confirmed in this study helped a thermal stability improvement in the nanocomposite due to the presence of GO or GO-PSSA acting as a thermal barrier.

그래핀옥사이드(GO)와 전도성 고분자(PPy, PANI, PEDOT)로 이루어진 나노복합체를 제자리 화학중합을 통하여 제조하였으며, 전도성 고분자의 함량 증가에 따른 특성변화를 분석하였다. GO에 존재하는 반응성 그룹 그리고 GO-poly(4-styrene sulfonic acid)(PSSA) 복합체 및 세 종류 나노복합체에서 고분자의 존재를 확인하였으며, GO와 PSSA 또는 전도성 고분자 사이의 상호작용이 제안되었다. GO-PSS/PEDOT 나노복합체의 경우 PEDOT 함량이 증가함에 따라 라만 스펙트럼의 $I_D/I_G$ 값이 감소하였으며 특성 피크 위치도 크게 변화하였다. GO-PSS/PEDOT 나노복합체의 경우 PEDOT이 GO-PSSA 층을 박리시켜 그들 분자층 사이로 내부 삽입되어 있는 형태를 취하며 GO 또는 GO-PSSA 분자층이 열차단층으로 작용하게 되어 나노복합체는 GO 또는 GO-PSSA보다 열안정성이 향상되었다. 또한 GO-PSSA와 PEDOT 사이에 형성된 균일한 hybridization 모폴로지를 확인하였으며, GO-PSS/PEDOT 나노복합체의 경우 가장 우수한 전기전도성을 보여 주었다.

Keywords

References

  1. T. Lee, T. Yum, B. Park, B. Sharma, H. K. Song, and B. S. Kim, J. Mater. Chem., 22, 21092 (2012). https://doi.org/10.1039/c2jm33111j
  2. T. T. Tung, J. F. Feller, T. Y. Kim, H. Kim, W. S. Yang, and K. S. Suh, J. Polym. Sci., Part A: Polym. Chem., 50, 927 (2012). https://doi.org/10.1002/pola.25847
  3. X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E. S. W. Kong, H. Wei, and Y. Zhang, J. Mater. Chem., 22, 22488 (2012). https://doi.org/10.1039/c2jm34340a
  4. T. Qian, S. Wu, and J. Shen, Chem. Commun., 49, 4610 (2013). https://doi.org/10.1039/c3cc00276d
  5. Z. Q. Zhao, X. Chen, Q. Yang, J. H. Liu, and X. J. Huang, Chem. Commun., 48, 2180 (2012). https://doi.org/10.1039/c1cc16735a
  6. B. Yin, Q. Liu, L. Yang, X. Wu, Z. Liu, Y. Hua, S. Yin, and Y. Chen, J. Nanosci. Nanotechnol., 10, 1934 (2010). https://doi.org/10.1166/jnn.2010.2107
  7. S. H. Domingues, R. V. Salvatierra, M. M. Oliveira, and A. J. G. Zarbin, Chem. Commun., 47, 2592 (2011). https://doi.org/10.1039/c0cc04304d
  8. S. Konwer, R. Boruah, and S. K. Dolui, J. Electronic Mater., 40, 2248 (2011). https://doi.org/10.1007/s11664-011-1749-z
  9. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, ACS Appl. Mater. Interfaces, 2, 821 (2010). https://doi.org/10.1021/am900815k
  10. K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, Chem. Mater., 22, 1392 (2010). https://doi.org/10.1021/cm902876u
  11. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, Electrochem. Commun., 11, 1158 (2009). https://doi.org/10.1016/j.elecom.2009.03.036
  12. H. Bai, K. Sheng, P. Zhang, C. Li, and G. Shi, J. Mater. Chem., 21, 18653 (2011). https://doi.org/10.1039/c1jm13918e
  13. U. Rana and S. Malik, Chem. Commun., 48, 10862 (2012). https://doi.org/10.1039/c2cc36052g
  14. B. Saner, S. A. Gursel, and Y. Yurum, Fuller. Nanotub. Carbon Nanostruct., 21, 233 (2013). https://doi.org/10.1080/1536383X.2011.613536
  15. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006). https://doi.org/10.1039/b512799h
  16. Le K. H. Trang, T. T. Tung, T. Y. Kim, W. S. Yang, H. Kim, and K. S. Suh, Polym. Int., 61, 93 (2012). https://doi.org/10.1002/pi.3152
  17. N. T. Tung, T. V. Khan, M. Jeon, Y. J. Lee, H. Chung, J. H. Bang, and D. Sohn, Macromol. Res., 19, 203 (2011). https://doi.org/10.1007/s13233-011-0216-2
  18. D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, and Y. Ma, J. Power Sources, 196, 5990 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.090
  19. Y. T. Joo, K. H. Jung, M. J. Kim, and Y. Kim, J. Appl. Polym. Sci., 127, 1508 (2013). https://doi.org/10.1002/app.37571
  20. Y. T. Joo, K. H. Jung, and Y. Kim, Polymer(Korea), 35, 395 (2011).
  21. K. Sheng and G. Shi, Synt. Met., 160, 1354 (2010). https://doi.org/10.1016/j.synthmet.2010.03.023
  22. A. Grinou, Y. S. Yun, and H. J. Jin, Macromol. Res., 20, 84 (2012). https://doi.org/10.1007/s13233-012-0002-9
  23. H. K. Jeong, M. H. Jin, K. H. An, and Y. H. Lee, J. Phys. Chem. C, 113, 13060 (2009). https://doi.org/10.1021/jp9026282
  24. Li Q. Xu, Yi L. Liu, K. G. Neoh, E. T. Kang, and G. D. Fu, Macromol. Rapid Commun., 32, 684 (2011). https://doi.org/10.1002/marc.201000765
  25. C. Basavaraja, W. J. Kim, P. X. Thinh, and D. S. Huh, Polym. Compos., 32, 2076 (2011). https://doi.org/10.1002/pc.21237

Cited by

  1. Preparation and Characterization of PEDOT/PSS Hybrid with Graphene Derivative Wrapped by Water-soluble Polymer vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1087