• 제목/요약/키워드: G-CW-complex

검색결과 6건 처리시간 0.016초

SEMIALGEBRAIC G CW COMPLEX STRUCTURE OF SEMIALGEBRAIC G SPACES

  • Park, Dae-Heui;Suh, Dong-Youp
    • 대한수학회지
    • /
    • 제35권2호
    • /
    • pp.371-386
    • /
    • 1998
  • Let G be a compact Lie group and M a semialgebraic G space in some orthogonal representation space of G. We prove that if G is finite then M has an equivariant semialgebraic triangulation. Moreover this triangulation is unique. When G is not finite we show that M has a semialgebraic G CW complex structure, and this structure is unique. As a consequence compact semialgebraic G space has an equivariant simple homotopy type.

  • PDF

BREDON HOMOLOGY OF WALLPAPER GROUPS

  • Ramon Flores
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1497-1522
    • /
    • 2023
  • In this paper we compute the Bredon homology of wallpaper groups with respect to the family of finite groups and with coefficients in the complex representation ring. We provide explicit bases of the homology groups in terms of irreducible characters of the stabilizers.

COHOMOLOGY AND TRIVIAL GOTTLIEB GROUPS

  • Lee, Kee-Young
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.185-191
    • /
    • 2006
  • This paper observes that the induced homomorphisms on cohomology groups by a cyclic map are trivial. For a CW-complex X, we use the fact to obtain some conditions of X so that the n-th Gottlieb group $G_n(X)$ is trivial for an even positive integer n. As corollaries, for any positive integer m, we obtain $G_{2m}(S^{2m})\;=\;0\;and\;G_2(CP^m)\;=\;0$ which are due to D. H. Gottlieb and G. Lang respectively, where $S^{2m}$ is the 2m- dimensional sphere and $CP^m$ is the complex projective m-space. Moreover, we show that $G_4(HP^m)\;=\;0\;and\;G_8(II)\;=\;0,\;where\;HP^m$ is the quaternionic projective m-space for any positive integer m and II is the Cayley projective space.

RELATIVE SELF-CLOSENESS NUMBERS

  • Yamaguchi, Toshihiro
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.445-449
    • /
    • 2021
  • We define the relative self-closeness number N��(g) of a map g : X → Y, which is a generalization of the self-closeness number N��(X) of a connected CW complex X defined by Choi and Lee [1]. Then we compare N��(p) with N��(X) for a fibration $X{\rightarrow}E{\rightarrow\limits^p}Y$. Furthermore we obtain its rationalized result.

대면적 전자빔 폴리싱 공정 시 발생하는 온도 분포 유한요소해석 연구 (Finite Element Analysis of Large-Electron-Beam Polishing-Induced Temperature Distribution)

  • 김지수;김진석;강은구;이석우;박형욱
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.931-936
    • /
    • 2013
  • Recently, the use of large-electron-beam polishing for polishing complex metal surfaces has been proposed. In this study, the temperature induced by a large electron beam was predicted using the heat transfer theory. A finite element (FE) model of a continuous wave (CW) electron beam was constructed assuming Gaussian distribution. The temperature distribution and melting depth of an SUS304 sample were predicted by changing electron-beam polishing process parameters such as energy density and beam velocity. The results obtained using the developed FE model were compared with experimental results for verifying the melting depth prediction capability of the developed FE model.