• Title/Summary/Keyword: G(f)-sequence

Search Result 147, Processing Time 0.019 seconds

Sequencing, Genomic Structure, Chromosomal Mapping and Association Study of the Porcine ADAMTS1 Gene with Litter Size

  • Yue, K.;Peng, J.;Zheng, R.;Li, J.L.;Chen, J.F.;Li, F.E.;Dai, L.H.;Ding, SH.H.;Guo, W.H.;Xu, N.Y.;Xiong, Y.ZH.;Jiang, S.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.917-922
    • /
    • 2008
  • A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif (ADAMTS1) plays a critical role in follicular rupture and represents a major advance in the proteolytic events that control ovulation. In this study, a 9,026-bp DNA sequence containing the full coding region, all 8 introns and part of the 5'and 3' untranslated region of the porcine ADAMTS1 gene was obtained. Analysis of the ADAMTS1 gene using the porcine radiation hybrid panel indicated that pig ADAMTS1 is closely linkage with microsatellite marker S0215, located on SSC13q49. The open reading frame of its cDNA covered 2,844 bp and encoded 947 amino acids. The coding region of porcine ADAMTS1 as determined by sequence alignments shared 85% and 81% identity with human and mouse cDNAs, respectively. The deduced protein contained 947 amino acids showing 85% sequence similarity both to the human and mouse proteins, respectively. Comparative sequencing of three pig breeds revealed one single nucleotide polymorphism (SNP) within exon 7 of which a G-C substitution at position 6006 changes a codon for arginine into a codon for proline. The substitution was situated within a PvuII recognition site and developed as a PCR-RFLP marker for further use in population variation investigations and association analysis with litter size. Allele frequencies of this SNP were investigated in seven pig breeds/lines. An association analysis in a new Qingping female line suggested that different ADAMTS1 genotypes have significant differences in litter size (p<0.01).

Distribution of mushrooms spontaneously growing in Naejangsan National Park (내장산국립공원의 자생버섯 분포상)

  • Pyung-Yeol, Ko;Hye-Sung, Park;Seung-Hak, Lee;Yong-Chull, Jeun
    • Journal of Mushroom
    • /
    • v.20 no.4
    • /
    • pp.208-217
    • /
    • 2022
  • Mushrooms in Naejangsan National Park between May and September of 2021 have been surveyed. In this period, a total of 4 divisions, 9 classes, 25 orders, 72 families, 171 genera, and 381 species, including 3 climate-sensitive biological indicator species were found. The order in which the most diverse array of species was observed is Agaricales, which includes 24 families, 64 genera, and 170 species. Among these, the genus Russula was dominant, with 30 species, followed by the genus Amanita with 27 species. Among the 12 grids we investigated, species diversity was greatest in grid F5, in which 56 species of mushrooms were found. In particular, a large number of ectomycorrhizal mushrooms, including Russula spp. and Lactarius spp. were recognized. We presume that the gentle slopes and the low occurrence of Sasa borealis in this area may create a favorable environment for wild mushrooms. In corroboration, some grids (e.g. F6, F8, and F10) covering steep slopes and harboring large numbers of Sasa borealis contained only 19 species. Based on DNA sequence analysis, the NJ21064 was identified as Chlorophyllum hortense, which is newly recorded in Korea.

Effect of Xeroderma Pigmentosum Complementation Group F Polymorphisms on Gastric Cancer Risk and Associations with H.pylori Infection

  • Zhang, Ji-Shun;Zhang, Chuan;Yan, Xue-Yan;Yuan, Zhi-Fang;Duan, Zhuo-Yang;Gao, Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1847-1850
    • /
    • 2013
  • We conducted a hospital case-control study by genotyping four potential functional single nucleotide polymorphisms (SNPs) to assess the association of Xeroderma pigmentosum complementation group F (XPF) with gastric cancer susceptibility, and role of XPF polymorphisms in combination with H.pylori infection in risk definition. A total of 331 patients with gastric cancer and 355 controls were collected. Four SNPs of XPF, rs180067, rs1799801, rs2276466 and rs744154, were genotyped by Taqman real-time PCR method with a 7900 HT sequence detector system. The gastric cancer patients were more likely to have smoking habit, a family history of cancer and H.pylori infection. We did not find any significant difference in the genotype distributions of XPF rs180067, rs1799801, rs2276466 and rs744154 between cases and controls. However, multivariate logistic analysis showed a non-significant decreased risk in patients carrying rs180067 G allele, rs1799801 T allele or rs2276466 T allele genotypes. A non-significant increased risk of gastric cancer was found in individuals carrying the rs744154 GG genotype. Stratification by H.pylori infection and smoking was not significantly different in polymorphisms of XPF rs180067, rs1799801, rs2276466 and rs744154. The four XPF SNPs did not show significant interaction with H.pylori infection and smoking status (P for interaction was 0.35 and 0.18, respectively). Our study indicated that polymorphisms in rs180067, rs1799801, rs2276466 and rs744154 may affect the risk of gastric cancer but further large sample size studies are needed to validate any association.

Detection and Quantification of Fusarium oxysporum f. sp. niveum Race 1 in Plants and Soil by Real-time PCR

  • Zhong, Xin;Yang, Yang;Zhao, Jing;Gong, Binbin;Li, Jingrui;Wu, Xiaolei;Gao, Hongbo;Lu, Guiyun
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.229-238
    • /
    • 2022
  • Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/µl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plant-pathogen interactions, and effective management.

Development of Fluidigm SNP Type Genotyping Assays for Marker-assisted Breeding of Chili Pepper (Capsicum annuum L.)

  • Kim, Haein;Yoon, Jae Bok;Lee, Jundae
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.465-479
    • /
    • 2017
  • Chili pepper (Capsicum annuum L.) is an economically important horticultural crop in Korea; however, various diseases, including Phytophthora root rot, anthracnose, powdery mildew, Cucumber mosaic virus (CMV), Pepper mild mottle virus (PMMoV), and Pepper mottle virus (PepMoV), severely affect their productivity and quality. Therefore, pepper varieties with resistance to multiple diseases are highly desired. In this study, we developed 20 SNP type assays for three pepper populations using Fluidigm nanofluidic dynamic arrays. A total of 4,608 data points can be produced with a 192.24 dynamic array consisting of 192 samples and 24 SNP markers. The assays were converted from previously developed sequence-tagged-site (STS) markers and included markers for resistance to Phytophthora root rot (M3-2 and M3-3), anthracnose (CcR9, CA09g12180, CA09g19170, CA12g17210, and CA12g19240), powdery mildew (Ltr4.1-40344, Ltr4.2-56301, and Ltr4.2-585119), bacterial spot (Bs2), CMV (Cmr1-2), PMMoV (L4), and PepMoV (pvr1 and pvr2-123457), as well as for capsaicinoids content (qcap3.1-40134, qcap6.1-299931, qcap6.1-589160, qdhc2.1-1335057, and qdhc2.2-43829). In addition, 11 assays were validated through a comparison with the corresponding data of the STS markers. Furthermore, we successfully applied the assays to commercial $F_1$ cultivars and to our breeding lines. These 20 SNP type assays will be very useful for developing new superior pepper varieties with resistance to multiple diseases and a higher content of capsaicinoids for increased pungency.

Production of Transgenic Pigs with an Introduced Missense Mutation of the Bone Morphogenetic Protein Receptor Type IB Gene Related to Prolificacy

  • Zhao, Xueyan;Yang, Qiang;Zhao, Kewei;Jiang, Chao;Ren, Dongren;Xu, Pan;He, Xiaofang;Liao, Rongrong;Jiang, Kai;Ma, Junwu;Xiao, Shijun;Ren, Jun;Xing, Yuyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.925-937
    • /
    • 2016
  • In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive $F_1$ piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive $F_1$ boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive $F_1$ sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. cDNA sequencing and western blot indicated that the exogenous BMPR1B CDS was successfully expressed in host pigs. The transgenic pigs showed normal litter size performance. However, no significant differences in litter size were found between transgene-positive and negative sows. Our study provides new insight into producing cloned transgenic livestock related to reproductive traits.

Detection of Soybean mosaic virus by Reverse Transcription Loop-mediated Isothermal Amplification (Reverse transcription Loop-mediated isothermal amplification을 이용한 Soybean mosaic virus의 진단)

  • Lee, Yeong-Hoon;Bae, Dae-Hyeon;Kim, Bong-Sub;Yoon, Young-Nam;Bae, Soon-Do;Kim, Hyun-Joo;Mainali, Bishwo P.;Park, In-Hee;Lee, Su-Heon;Kang, Hang-Won
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.315-320
    • /
    • 2015
  • Soybean mosaic virus (SMV) is a prevalent pathogen that causes significant yield reduction in soybean production worldwide. SMV belongs to potyvirus and causes typical symptoms such as mild mosaic, mosaic and necrosis. SMV is seed-borne and also transmitted by aphid. Eleven SMV strains, G1 to G7, G5H, G6H, G7H, and G7a were reported in soybean varieties in Korea. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) method allowed one-step detection of gene amplification by simple procedure and needed only a simple incubator for isothermal template. This RT-LAMP method allowed direct detection of RNA from virus-infected plants without thermal cycling and gel electrophoresis. In this study, we designed RT-LAMP primers named SML-F3/B3/FIP/BIP from coat protein gene sequence of SMV. After the reaction of RT-LAMP, products were identified by electrophoresis and with the detective fluorescent dye, SYBR Green I under daylight and UV light. Optimal reaction condition was at $58^{\circ}C$ for 60 min and the primers of RT-LAMP showed the specificity for nine SMV strains tested in this study.

Probing the Critical Residues for Intramolecular Fructosyl Transfer Reaction of a Levan Fructotransferase

  • Moon, Keum-Ok;Choi, Kyoung-Hwa;Kang, Ho-Young;Oh, Jeong-Il;Jang, Se-Bok;Park, Cheon-Seok;Lee, Jong-Hoon;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1064-1069
    • /
    • 2008
  • Levan fructotransferase (LFTase) preferentially catalyzes the transfructosylation reaction in addition to levan hydrolysis, whereas other levan-degrading enzymes hydrolyze levan into a levan-oligosaccharide and fructose. Based on sequence comparisons and enzymatic properties, the fructosyl transfer activity of LFTase is proposed to have evolved from levanase. In order to probe the residues that are critical to the intramolecular fructosyl transfer reaction of the Microbacterium sp. AL-210 LFTase, an error-prone PCR mutagenesis process was carried out, and the mutants that led to a shift in activity from transfructosylation towards hydrolysis of levan were screened by the DNS method. After two rounds of mutagenesis, TLC and HPLC analyses of the reaction products by the selected mutants revealed two major products; one is a di-D-fructose-2,6':6,2'-dianhydride (DFAIV) and the other is a levanbiose. The newly detected levanbiose corresponds to the reaction product from LFTase lacking transferring activity. Two mutants (2-F8 and 2-G9) showed a high yield of levanbiose (38-40%) compared with the wild-type enzyme, and thus behaved as levanases. Sequence analysis of the individual mutants responsible for the enhanced hydrolytic activity indicated that Asn-85 was highly involved in the transfructosylation activity of LFTase.

Molecular Characterization and Tissue-specific Expression of a Novel FKBP38 Gene in the Cashmere Goat (Capra hircus)

  • Zheng, X.;Hao, X.Y.;Chen, Y.H.;Zhang, X.;Yang, J.F.;Wang, Z.G.;Liu, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.758-763
    • /
    • 2012
  • As a member of a subclass of immunophilins, it is controversial that FKBP38 acts an upstream regulator of mTOR signaling pathway, which control the process of cell-growth, proliferation and differentiation. In order to explore the relationship between FKBP38 and mTOR in the Cashmere goat (Capra hircus) cells, a full-length cDNA was cloned (GenBank accession number JF714970) and expression pattern was analyzed. The cloned FKBP38 gene is 1,248 bp in length, containing an open reading frame (ORF) from nucleotide 13 to 1,248 which encodes 411 amino acids, and 12 nucleotides in front of the initiation codon. The full cDNA sequence shares 98% identity with cattle, 94% with horse and 90% with human. The putative amino acid sequence shows the higher homology which is 98%, 97% and 94%, correspondingly. The bioinformatics analysis showed that FKBP38 contained a FKBP_C domain, two TPR domains and a TM domain. Psite analysis suggested that the ORF encoding protein contained a leucine-zipper pattern and a Prenyl group binding site (CAAX box). Tissue-specific expression analysis was performed by semi-quantitative RT-PCR and showed that the FKBP38 expression was detected in all the tested tissues and the highest level of mRNA accumulation was detected in testis, suggesting that FKBP38 plays an important role in goat cells.

Isolation and Characterization of a Novel Agar-Degrading Marine Bacterium, Gayadomonas joobiniege gen, nov, sp. nov., from the Southern Sea, Korea

  • Chi, Won-Jae;Park, Jae-Seon;Kwak, Min-Jung;Kim, Jihyun F.;Chang, Yong-Keun;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1509-1518
    • /
    • 2013
  • An agar-degrading bacterium, designated as strain $G7^T$, was isolated from a coastal seawater sample from Gaya Island (Gayado in Korean), Republic of Korea. The isolated strain $G7^T$ is gram-negative, rod shaped, aerobic, non-motile, and non-pigmented. A similarity search based on its 16S rRNA gene sequence revealed that it shares 95.5%, 90.6%, and 90.0% similarity with the 16S rRNA gene sequences of Catenovulum agarivorans $YM01^T$, Algicola sagamiensis, and Bowmanella pacifica W3-$3A^T$, respectively. Phylogenetic analyses demonstrated that strain $G7^T$ formed a distinct monophyletic clade closely related to species of the family Alteromonadaceae in the Alteromonas-like Gammaproteobacteria. The G+C content of strain $G7^T$ was 41.12 mol%. The DNA-DNA hybridization value between strain $G7^T$ and the phylogenetically closest strain $YM01^T$ was 19.63%. The genomes of $G7^T$ and $YM01^T$ had an average ANIb value of 70.00%. The predominant isoprenoid quinone of this particular strain was ubiquinone-8, whereas that of C. agarivorans $YM01^T$ was menaquinone-7. The major fatty acids of strain $G7^T$ were Iso-$C_{15:0}$ (41.47%), Anteiso-$C_{15:0}$ (22.99%), and $C_{16:1}{\omega}7c/iso-C_{15:0}2-OH$ (8.85%), which were quite different from those of $YM01^T$. Comparison of the phenotypic characteristics related to carbon utilization, enzyme production, and susceptibility to antibiotics also demonstrated that strain $G7^T$ is distinct from C. agarivorans $YM01^T$. Based on its phenotypic, chemotaxonomic, and phylogenetic distinctiveness, strain $G7^T$ was considered a novel genus and species in the Gammaproteobacteria, for which the name Gayadomonas joobiniege gen. nov. sp. nov. (ATCC BAA-2321 = $DSM25250^T=KCTC23721^T$) is proposed.