DOI QR코드

DOI QR Code

Molecular Characterization and Tissue-specific Expression of a Novel FKBP38 Gene in the Cashmere Goat (Capra hircus)

  • Zheng, X. (College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education) ;
  • Hao, X.Y. (College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education) ;
  • Chen, Y.H. (College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education) ;
  • Zhang, X. (College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education) ;
  • Yang, J.F. (College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education) ;
  • Wang, Z.G. (College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education) ;
  • Liu, D.J. (College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education)
  • Received : 2011.10.31
  • Accepted : 2012.01.24
  • Published : 2012.06.01

Abstract

As a member of a subclass of immunophilins, it is controversial that FKBP38 acts an upstream regulator of mTOR signaling pathway, which control the process of cell-growth, proliferation and differentiation. In order to explore the relationship between FKBP38 and mTOR in the Cashmere goat (Capra hircus) cells, a full-length cDNA was cloned (GenBank accession number JF714970) and expression pattern was analyzed. The cloned FKBP38 gene is 1,248 bp in length, containing an open reading frame (ORF) from nucleotide 13 to 1,248 which encodes 411 amino acids, and 12 nucleotides in front of the initiation codon. The full cDNA sequence shares 98% identity with cattle, 94% with horse and 90% with human. The putative amino acid sequence shows the higher homology which is 98%, 97% and 94%, correspondingly. The bioinformatics analysis showed that FKBP38 contained a FKBP_C domain, two TPR domains and a TM domain. Psite analysis suggested that the ORF encoding protein contained a leucine-zipper pattern and a Prenyl group binding site (CAAX box). Tissue-specific expression analysis was performed by semi-quantitative RT-PCR and showed that the FKBP38 expression was detected in all the tested tissues and the highest level of mRNA accumulation was detected in testis, suggesting that FKBP38 plays an important role in goat cells.

Keywords

References

  1. Bai, X., D. Ma, A. Liu, X. Shen, Q. J. Wang, Y. Liu and Y. Jiang. 2007. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318:977-980. https://doi.org/10.1126/science.1147379
  2. Bulgakov, O. V., J. T. Eggenschwiler, D. H. Hong, K. V. Anderson and T. Li. 2004. FKBP8 is a negative regulator of mouse sonic hedgehog signaling in neural tissues. Development 131:2149-2159. https://doi.org/10.1242/dev.01122
  3. Castro, A. F., J. F. Rebhun, G. J. Clark and L. A. Quilliam. 2003. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin-and farnesylation-dependent manner. J. Biol. Chem. 278:32493-32496. https://doi.org/10.1074/jbc.C300226200
  4. Chen, Y., P. Sternberg and J. Cai. 2008. Characterization of a Bcl-XL-interacting protein FKBP8 and its splice variant in human RPE cells. Invest. Ophthalmol. Vis. Sci. 49:1721-1727. https://doi.org/10.1167/iovs.07-1121
  5. Kang, C. B., L. Feng, J. Chia and H. S. Yoon. 2005. Molecular characterization of FK-506 binding protein 38 and its potential regulatory role on the anti-apoptotic protein Bcl-2. Biochem. Biophys. Res. Commun. 337:30-38. https://doi.org/10.1016/j.bbrc.2005.09.023
  6. Lam, E., M. Martin and G. Wiederrecht. 1995. Isolation of a cDNA encoding a novel human FK506-binding protein homolog containing leucine zipper and tetratricopeptide repeat motifs. Gene 160:297-302. https://doi.org/10.1016/0378-1119(95)00216-S
  7. Liu, J. O. 2003. Endogenous protein inhibitors of calcineurin. Biochem. Biophys. Res. Commun. 311:1103-1109. https://doi.org/10.1016/j.bbrc.2003.10.020
  8. Long, X., Y. Lin, S. Ortiz-Vega, S. Busch and J. Avruch. 2007. The Rheb switch 2 segment is critical for signaling to target of rapamycin complex 1. J. Biol. Chem. 282:18542-18551. https://doi.org/10.1074/jbc.M610736200
  9. Long, X., Y. Lin, S. Ortiz-Vega, K. Yonezawa and J. Avruch. 2005. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15: 702-713. https://doi.org/10.1016/j.cub.2005.02.053
  10. Ma, D., X. Bai, S. Guo and Y. Jiang. 2008. The switch I region of Rheb is critical for its interaction with FKBP38. J. Biol. Chem. 283:25963-25970. https://doi.org/10.1074/jbc.M802356200
  11. Maestre- Martínez, M., F. Edlich, F. Jarczowski, M. Weiwad, G. Fischer and C. Lücke. 2006. Solution structure of the FK506-binding domain of human FKBP38. J. Biomol. NMR 34:197-202. https://doi.org/10.1007/s10858-006-0018-6
  12. Nakagawa, T., M. Shirane, S. Iemura, T. Natsume and K. I. Nakayama. 2007. Anchoring of the 26S proteasome to the organellar membrane by FKBP38. Genes Cells 12:709-719.
  13. Nielsen, J. V., C. Mitchelmore, K. M. Pedersen, K. M. Kjaerulff, B. Finsen and N. A. Jensen. 2004. Fkbp8: novel isoforms, genomic organization, and characterization of a forebrain promoter in transgenic mice. Genomics 83:181-192. https://doi.org/10.1016/j.ygeno.2003.07.001
  14. Sarbassov, D., S. M. Ali and D. M. Sabatini. 2005. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17:596-603. https://doi.org/10.1016/j.ceb.2005.09.009
  15. Sato, T., A. Umetsu and F. Tamanoi. 2008. Characterization of the Rheb-mTOR signaling pathway in mammalian cells: constitutive active mutants of Rheb and mTOR. Methods Enzymol. 438:307-320. https://doi.org/10.1016/S0076-6879(07)38021-X
  16. Shirane, M. and K. I. Nakayama. 2003. Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nat. Cell Biol. 5:28-37. https://doi.org/10.1038/ncb894
  17. Shirane, M., MM. Ogawa, J. Motoyama and K. I. Nakayama. 2008. Regulation of apoptosis and neurite extension by FKBP38 is required for neural tube formation in the mouse. Genes Cells 13:635-651. https://doi.org/10.1111/j.1365-2443.2008.01194.x
  18. Uhlenbrock, K., M. Weiwad, R. Wetzker, G. Fischer, A. Wittinghofer and I. Rubio. 2009. Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway. FEBS Lett. 583:965-970. https://doi.org/10.1016/j.febslet.2009.02.015
  19. Wang, H. Q., Y. Nakaya, Z. Du, T. Yamane, M. Shirane, T. Kudo, M. Takeda, K. Takebayashi, Y. Noda and K. I. Nakayama. 2005. Interaction of presenilins with FKBP38 promotes apoptosis by reducing mitochondrial Bcl-2. Hum. Mol. Genet. 14:1889-1902. https://doi.org/10.1093/hmg/ddi195
  20. Weiwad, M., F. Edlich, F. Erdmann, F. Jarczowski, S. Kilka, M. Dorn, A. Pechstein and G. Fischer. 2005. A reassessment of the inhibitory capacity of human FKBP38 on calcineurin. FEBS Lett. 579:1591-1596. https://doi.org/10.1016/j.febslet.2004.12.098
  21. Wong, R. L. Y., B. J. Wlodarczyk, K. S. Min, M. L. Scott, S. Kartiko, W. Yu, M. Y. Merriweather, P. Vogel, B. P. Zambrowicz and R. H. Finnell. 2008. Mouse Fkbp8 activity is required to inhibit cell death and establish dorso-ventral patterning in the posterior neural tube. Hum. Mol. Genet. 17: 587-601.

Cited by

  1. SQSTM1/p62 interacts with FKBP38 and regulates cell cycle in Cashmere goat foetal fibroblasts vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2018.1495643