• Title/Summary/Keyword: Fuzzy-logic

Search Result 2,951, Processing Time 0.031 seconds

Development of the Traffic Actuation Signal Control System Based on Fuzzy Logic on an Arterial Street (Fuzzy Logic을 적용한 간선도로 상의 교통감응 신호제어)

  • 진선미;김성호;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.71-83
    • /
    • 2003
  • An arterial street control is performed for the purpose of the progression of a traffic flow using the arterial. However during the progression in the arterial, the change according to the time is one of the most representative problems occurring at a signal plan. This paper intends to efficiently operate the arterial progression by applying fuzzy logic, which is thought to be the most possible one in the inference as that of the human logic, to the traffic responsive control system. Fuzzy Logic controller is appliable to the daily human language (linguistic). can be dealt with the uncertain traffic data and is useful on planning the signal control to sensitively confront the randomly changing traffic condition. This study, based on the signal control part of the isolated intersection in "A Development of a Real-time, Traffic Adaptive Control Scheme Through VIDs"(Seong Ho. Kim. 1996). suggested the strategy for the progression control in the arterial and analyzed its effect by comparing the effect of the existing control method. In addition, the study compared each effect by using TRAF-NETSIM which is the traffic simulation software to analyze each control method.

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

Study of Discharge in Point-Plane Air Interval Using Fuzzy Logic

  • Bourek, Yacine;Mokhnache, Leila;Nait Said, Nacereddine;Kattan, Rafik
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.410-417
    • /
    • 2009
  • The objective of this paper is to study the discharge phenomenon for a point-plane air interval using an original fuzzy logic system. Firstly, a physical model based on streamer theory with consideration of the space charge fields due to electrons and positive ions is proposed. To test this model we have calculated the breakdown threshold voltage for a point-plane air interval. The same model is used to determine the discharge steps for different configurations as an inference data base. Secondly, using results obtained by the numerical simulation of the previous model, we have introduced the fuzzy logic technique to predict the breakdown threshold voltage of the same configurations used in the numerical model and make estimation on the insulating state of the air interval. From the comparison of obtained results, we can conclude that they are in accordance with the experimental ones obtained for breakdown discharges in different point-plane air gaps collected from the literature. The proposed study using fuzzy logic technique shows a good performance in the analysis of different discharge steps of the air interval.

Design of a Visual Servoing System of an Autonomous Mobile Robot using Fuzzy Logic System (자율이동로봇의 목표물 추적을 위한 시각구동장치의 설계 및 제어)

  • Song Un-Ji;Choi Byung-Jae;Yoo Seog-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.454-459
    • /
    • 2006
  • The research and development for autonomous mobile robots has widely been reported. This paper describes a fuzzy logic based visual servoing system for an autonomous mobile robot. An existing system always needs to keep a moving object in overall image. This makes difficult to move the autonomous mobile robot spontaneously. In this paper we first explain an autonomous mobile robot and fuzzy logic system. And then we design a fuzzy logic based visual servoing system. We extract some features of the object from an overall image and then design a fuzzy logic system for controlling the visual servoing system to an exact position. We here introduce a shooting robot that can track an object and hit it. We show that the proposed system presents a desirable performance by a computer simulation and some experiments.

Fuzzy Logic-Based Moldability-Conforming System in Injection Molding

  • Kang, Seong-Nam;Huh, Yong-Jeong;Huh, Yong-Jeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.49-52
    • /
    • 2002
  • Short shot is a molded part that is incomplete since insufficient material was injected into the mold. Remedial actions to solve short shot can be dune by injection molding experts based on their empirical knowledge. Modifying mold and part, changing resin to less viscous one, and adjusting process conditions are general remedies. Experts of injection molding might try to adjust process conditions such as mold temperature, melt temperature, injection time based on their empirical knowledge as the first remedy because adjustment of process conditions is the most economic way in time and cost. However it is difficult to find appropriate process conditions as they are highly coupled and there are so many elements to be considered. In this paper, a fuzzy logic algorithm has been proposed to find an appropriate mold temperature. With the percentage of the insufficient quantity of an injection molded part, an appropriate mold temperature can be obtained by the fuzzy logic algorithm.

Design of Fuzzy Logic Controller for Optimal Control of Hybrid Renewable Energy System (하이브리드 신재생에너지 시스템의 최적제어를 위한 퍼지 로직 제어기 설계)

  • Jang, Seong-Dae;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.143-148
    • /
    • 2018
  • In this paper, the optimal fuzzy logic controller(FLC) for a hybrid renewable energy system(HRES) is proposed. Generally, hybrid renewable energy systems can consist of wind power, solar power, fuel cells and storage devices. The proposed FLC can effectively control the entire HRES by determining the output power of the fuel cell or the absorption power of the electrolyzer. In general, fuzzy logic controllers can be optimized by classical optimization algorithms such as genetic algorithms(GA) or particle swarm optimization(PSO). However, these FLC have a disadvantage in that their performance varies greatly depending on the control parameters of the optimization algorithms. Therefore, we propose a method to optimize the fuzzy logic controller using the teaching-learning based optimization(TLBO) algorithm which does not have the control parameters of the algorithm. The TLBO algorithm is an optimization algorithm that mimics the knowledge transfer mechanism in a class. To verify the performance of the proposed algorithm, we modeled the hybrid system using Matlab Tool and compare and analyze the performance with other classical optimization algorithms. The simulation results show that the proposed method shows better performance than the other methods.

Tracking Control of Servo System using Fuzzy Logic Cross Coupled Controller (퍼지 논리형 상호결합 제어기를 이용한 서보 시스템의 추적제어)

  • 신두진;허욱열
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.361-366
    • /
    • 2001
  • This thesis proposes a fuzzy logic cross coupled controller for a multi axis servo system. The overall control system consists of three elements: the axial position controller, the speed controller, and a fuzzy logic cross coupled controller. In conventional multi axis servo system, the motion of each axis is controlled independently without regard to the motion of other axes, in which the contour error, defined as the shortest distance between the desired and actual contours is compensated only by the position error of each axis. This decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties, Therefore, the multi axis servo system must receive and evaluate the motion of all axes for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However the existing cross coupled controllers cannot overcome friction, backlash and parameter variation. Also, since it is difficult to obtain an accurate mathematical model of multi axis system, here we investigate a fuzzy logic cross coupled controller method. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

A Cooperative Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Networks

  • Thuc, Kieu-Xuan;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.289-304
    • /
    • 2010
  • This paper proposes a novel scheme for cooperative spectrum sensing on distributed cognitive radio networks. A fuzzy logic rule - based inference system is proposed to estimate the presence possibility of the licensed user's signal based on the observed energy at each cognitive radio terminal. The estimated results are aggregated to make the final sensing decision at the fusion center. Simulation results show that significant improvement of the spectrum sensing accuracy is achieved by our schemes.

Induction Motor Direct Torque Control with Fuzzy Logic Method

  • Chikhi, Abdessalem;Chikhi, Khaled
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.234-239
    • /
    • 2009
  • In this article we present the simulation results of induction motor speed regulation by direct torque control with a classic PI regulator. The MATLAB Simulink programming environment is used as a simulation tool. The results obtained, using a fuzzy logic, shows the importance of this method in the improvement of the performance of such regulation.

Tuning gains of a PID controller using fuzzy logic-based tuners (퍼지 로직 동조기를 이용한 PID 제어기의 이득 조정)

  • 이명원;권순학;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.184-187
    • /
    • 1996
  • In this paper, an algorithm for tuning gains of a PID controller is proposed. The proposed algorithm is composed of two stages. The first is a stage for Lyapunov function-based initial stabilization of an overall system and rough tuning gains of the PID controller. The other is that for fine tuning gains of the PID controller. All tunings are performed by using the well-known fuzzy logic-based tuner. The computer simulations are performed to show the validity of the proposed algorithm and results are presented.

  • PDF