• Title/Summary/Keyword: Fuzzy weights

Search Result 292, Processing Time 0.028 seconds

A Study on the Diagnosis of Appendicitis using Fuzzy Neural Network (퍼지 신경망을 이용한 맹장염진단에 관한 연구)

  • 박인규;신승중;정광호
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.253-257
    • /
    • 2000
  • the objective of this study is to design and evaluate a methodology for diagnosing the appendicitis in a fuzzy neural network that integrates the partition of input space by fuzzy entropy and the generation of fuzzy control rules and learning algorithm. In particular the diagnosis of appendicitis depends on the rule of thumb of the experts such that it associates with the region, the characteristics, the degree of the ache and the potential symptoms. In this scheme the basic idea is to realize the fuzzy rle base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by back propagation learning rule. To eliminate the number of the parameters of the rules, the output of the consequences of the control rules is expressed by the network's connection weights. As a result we obtain a method for reducing the system's complexities. Through computer simulations the effectiveness of the proposed strategy is verified for the diagnosis of appendicitis.

  • PDF

Development of Travelling Control Algorithm Based Fuzzy Perception and Neural Network for Two Wheel Driving Robot (퍼지추론 및 뉴럴네트워크 기반 2휠구동 로봇의 주행제어알고리즘 개발)

  • Kang, Eon-Uck;Yang, Jun-Seok;Cha, Bo-Nam;Park, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.69-76
    • /
    • 2014
  • This paper proposes a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

An Algorithmic approach for Fuzzy Logic Application to Decision-Making Problems (결정 문제에 대한 퍼지 논리 적용의 알고리즘적 접근)

  • 김창종
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.3-15
    • /
    • 1997
  • In order to apply fuzzy logic, two major tasks need to be performed: the derivation of fuzzy rules and the determination of membership functions. These tasks are often difficult and time-consuming. This paper presents an algorithmic method for generating membership functions and fuzzy rules applicable to decision-making problems; the method includes an entropy minimization for clustering analog samples. Membership functions are derived by partitioning the variables into desired number of fuzzy terms, and fuzzy rules are obtained using minimum entropy clustering. In the mle derivation process, rule weights are also calculated. Inference and defuzzification for classification problems are also discussed.

  • PDF

Real-Time Control for Autonomous Cruise of Mobile Robot Using Fuzzy Neural Network (퍼지신경망을 이용한 자율주행 이동로봇의 실시간 제어)

  • 정동연;이우송;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1697-1700
    • /
    • 2003
  • We propose a new technique for real-time controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (이동로봇의 자율주행을 위한 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.312-318
    • /
    • 2003
  • We propose a new technique for the cruise control system design of a mobile robot with three drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized teaming architecture. It is proposed a learning controller consisting of too neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by three independent wheels.

  • PDF

The Azimuth and Velocity Control of a Movile Robot with Two Drive Wheel by Neutral-Fuzzy Control Method (뉴럴-퍼지제어기법에 의한 두 구동휠을 갖는 이동 로봇의 자세 및 속도 제어)

  • 한성현
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.84-95
    • /
    • 1997
  • This paper presents a new approach to the design speed and azimuth control of a mobile robot with drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frmework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simple the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

The Study on Inconsistent Rule Based Fuzzy Logic Control using Neural Network

  • Cho, Jae-Soo;Park, Dong-Jo;Z. Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.145-150
    • /
    • 1997
  • In this paper is studied a method of fuzzy logic control based on possibly inconsistent if-then rules representing uncertain knowledge or imprecise data. In most cases of practical applications adopting fuzzy if-then rule bases, inconsistent rules have been considered as ill-defined rules and, thus, not allowed to be in the same rule base. Note, however, that, in representing uncertain knowledge by using fuzzy if-then rules, the knowledge sometimes can not be represented in literally consistent if-then rules. In this regard, when it is hard to obtain consistent rule base, we propose the weighted rule base fuzzy logic control depending on output performance using neural network and we will derive the weight update algorithm. Computer simulations show the proposed method has good performance to deal with the inconsistent rule base fuzzy logic control. And we discuss the real application problems.

  • PDF

Intelligent Control of Mobile robot Using Fuzzy Neural Network Control Method (퍼지-신경망 제어기법을 이용한 Mobile Robot의 지능제어)

  • 정동연;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

An Intelligent Control of TRack Vehicle Using Fuzzy-Neural Network Control Method (퍼지-신경회로망 제어기법에 의한 궤도차량의 지능제어)

  • 신행봉;김용태;조길수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.210-215
    • /
    • 1999
  • In this paper, a new approach to the dynamic control technique for track vehicle system using fuzzy-neural network control technique is proposed. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

Product image evaluation technique using fuzzy-weighted checklist (모호가중점검목록을 이용한 제품의 감성파악)

  • 박경수;정광태
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.15-26
    • /
    • 1996
  • When a product is designed, it is important to consider its image on consumers. In this study, we developed a technique to measure product image. Because human image of a product is very subjective and fuzzy, it is difficult to measure easily. To deal with this difficulty effectively, we used fuzzy- weighted checklist. The fuzzy-weighted checklist presents a fuzzy version of the weighted checklist technique for evaluating or comparing complex systems or subjects. In this technique, we used a pairwise comparison method to obtain the relative importance weights of image factors. Also, we used linguistic ratings to obtain the scores of image factors for a product. Then, we synthesized the scores of image factors to obtain a fuzzy composite score and its linguistic approximation. The entire procedure of this technique was written in quick Basic. As an example, this techinque is applied to car evaluation. The results show that this technique can be effectively used to the quqntitative evaluation of huamn image.

  • PDF