• Title/Summary/Keyword: Fuzzy membership

Search Result 1,234, Processing Time 0.022 seconds

A Study on the Optimal Design Fuzzy Type Stabilizing Controller using Genetic Algorithm (유전 알고리즘을 이용한 퍼지형 안전화 제어기의 최적 설계에 관한 연구)

  • Lee, Heung-Jae;Lim, Chan-Ho;Yoon, Byong-Gyu;Lim, Hwa-Young;Song, Ja-Youn
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1382-1387
    • /
    • 1999
  • This paper presents an optimal fuzzy power system stabilizer to damp out low frequency oscillation. So far fuzzy controllers have been applied to power system stabilizing controllers due to its excellent properties on the nonlinear systems. But the design process of fuzzy logic power system stabilizer requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This paper presents and optimal design method of the fuzzy logic stabilizer using the genetic algorithm. Non-symmetric membership functions are optimally tuned over an evaluation function. The present inputs of fuzzy stabilizer are torque angle error and the change of torque angle error without loss of generality. The coding method used in this paper is concatenated binary mapping. Each linguistic fuzzy variable, defined as the peak of a membership function, is assigned by the mapping from a minimum value to a maximum value using eight bits. The tournament selection and the elitism are used to keep the worthy individuals in the next generation. The proposed system is applied to the one-machine infinite-bus model of a power system, and the results showed a promising possibility.

  • PDF

The Design of Adaptive Fuzzy Controller for Autonomous Navigation of Mobile Robot (이동 로보트의 자율 주행을 위한 적응 퍼지 제어기의 설계)

  • O, Jun-Seop;Choe, Yun-Ho;Park, Jin-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.5
    • /
    • pp.1-12
    • /
    • 2000
  • In this paper we propose a design method of the adaptive fuzzy controller for autonomous navigation of mobile robots based on the fuzzy theory. We present two improvements. First, unnecessary rules in the fuzzy inference process make data processing time increase. We reduce this data processing time by generating suitable fuzzy inference rules and membership functions according to the current state of a mobile robot. It is implemented with the clustering method using input and output data pairs, and then it is possible for a mobile robot to navigate in shorter processing time with less fuzzy inference rules. Second, existing algorithms used fixed membership functions of input and output variables, hence converged slowly. We improve convergence time via scaling membership functions generated by the clustering method. To evaluate and compare the performance of the proposed method with the existing fuzzy navigation controller, computer simulations and navigation experiments of a mobile robot are Presented.

  • PDF

A Fuzzy Linear Programming Problem with Fuzzy Convergent Equality Constraints (퍼지 융합 등식 제약식을 갖는 퍼지 선형계획법 문제)

  • Oh, Se-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.227-232
    • /
    • 2015
  • The fuzzy linear programming(FLP) is the useful approach to many real world problems under uncertainty. This paper deals with a FLP whose objective value is fuzzy. And the right hand sides of convergent equality constraints are fuzzy numbers. We assume that the membership function of the objective value is piecewise linear and those of the right hand side are trapezoidal. Each of these trapezoidal functions can be algebraically replaced with three linear functions. Then the FLP problem is transformed into the Zimmermann's symmetric model. The fuzzy solution based on the max-min rule can be obtained by solving the crisp linear programming problem derived from the symmetric model. A numerical example has illustrated our approach. The application of our approach to the inconsistent linear system can enable generate us to get define the useful and flexible inexact solutions within acceptable tolerance. Further research is required to generalize the membership function.

Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering (Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This paper concerns Fuzzy Radial Basis Function Neural Network (FRBFNN) and automatic rule generation of extraction of the FRBFNN by means of mountain clustering. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values (degree of membership) directly rely on the computation of the relevant distance between data points. Also, we consider high-order polynomial as the consequent part of fuzzy rules which represent input-output characteristic of sup-space. The number of clusters and the centers of clusters are automatically generated by using mountain clustering method based on the density of data. The centers of cluster which are obtained by using mountain clustering are used to determine a degree of membership and weighted least square estimator (WLSE) is adopted to estimate the coefficients of the consequent polynomial of fuzzy rules. The effectiveness of the proposed model have been investigated and analyzed in detail for the representative nonlinear function.

  • PDF

Fuzzy multi-objective optimization of the laminated composite beam (복합재 적층 보의 퍼지 다목적 최적설계)

  • 이강희;구만회;이종호;홍영기;우호길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.143-148
    • /
    • 2000
  • In this article, we presents multi-objective design optimization of laminated composite beam using Fuzzy programming method. At first, the two design objectives are minimizing the structural weight and maximizing the buckling load respectively. Fuzzy multi-optimization problem can be formulated based on results of single optimizations. Due to different relative importance of design objectives, membership functions are constructed by adding exponential parameters for different objective's weights. Finite element analysis of composite beam for buckling behavior are carried by Natural mode method proposed by J.Argyris and computational time of analysis can be reduced. With this scheme, a designer can conveniently obtain a compromise optimal solution of a multi-objective optimization problem only by providing some exponential parameters corresponding to the importance of the objective functions.

  • PDF

Blending Precess Optimization using Fuzzy Set Theory an Neural Networks (퍼지 및 신경망을 이용한 Blending Process의 최적화)

  • 황인창;김정남;주관정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF

Comparing object images using fuzzy-logic induced Hausdorff Distance (퍼지 논리기반 HAUSDORFF 거리를 이용한 물체 인식)

  • 강환일
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2000
  • In this paper we propose the new binary image matching algorithm called the Fuzzy logic induced Hausdorff Distance(FHD) for finding the maximally matched image with the query image. The membership histogram is obtained by normalizing the cardinality of the subset with the corresponding radius after obtaining the distribution of the minimum distance computed by the Hausdroff distance between two binary images. in the proposed algorithm, The fuzzy influence method Center of Gravity(COG) is applied to calculate the best matching candidate in the membership function described above. The proposed algorithm shows the excellent results for the face image recognition when the noise is added to the query image as well as for the character recognition.

  • PDF

A study on fuzzy constraint line clustering for optical flow estimation (Optical Flow 추정을 위한 Fuzzy constraint Line Clustering에 관한 연구)

  • 김현주;강해석;이상홍;김문현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.150-158
    • /
    • 1994
  • In this paepr, Fuzzy Constraint Line Clustering (FCLC) method for optical flow estimation is proposed. FCLC represents the spatical and temporal gradients as fuzzy sets. Based on these sets, several constraint lines with different membership values are generated for the poxed whose velocity is to be estimated. We describe the process for obtaining the membership values of the spatial and temporal gradients and that of the corresponding constraint line. We also show the process for deciding the tightest cluster of point formalated by intersection between constraint lines. For the synthetic and real images, the results of FCLC are compared with of CLC.

  • PDF

A Study on the Fuzzy Maximal Flow using Interger (정수를 이용한 퍼지최대흐름에 관한 연구)

  • 신재환;김창은;심종칠
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.7-16
    • /
    • 1994
  • In the existing deterministic network, the capacity of each arc has determined property. But actually, it may be a property which cannot be determined. Even though it should be determining, it contains many errors. In treating these kinds of problems, fuzzy theory is suitable. Recently, due to development the study on complicated and indefinited systems which contain fuzziness could be possible. This paper includes that the capacity of each arc and the goal quantity with nonnegative integer have the fuzziness. The object is to search the new mathod of fuzzy maximal flow quantity. If the degree of arc membership function of the minimal cut part is not larger than that of arc membership function of the part except the minimal cut, first calcurate nonfuzzy maximal flow quantity, and then can compute the optimal quantity the 3rd step at one time with Max-Min fuzzy operating in the arc capacity of minimal cut and the goal quantity without a great number of recalculation.

  • PDF

Implementation of Fuzzy Controller of DC Motor Using Evolutionary Computation (진화 연산을 이용한 DC 모터 퍼지 제어기 구현)

  • Hwang, G.H.;Kim, H.S.;Mun, K.J.;Lee, H.S.;Park, J.H.;Hwang, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.189-191
    • /
    • 1995
  • This paper proposes a design of self-tuning fuzzy controller based on evolutionary computation. Optimal membership functions are found by using evolutionary computation. Genetic algorithms and evolution strategy are used for tuning of fuzzy membership function. An arbitrarily speed trajectory is selected to show the performance of the proposed methods. Experiment results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on evolutionary computation.

  • PDF