• Title/Summary/Keyword: Fuzzy learning

Search Result 982, Processing Time 0.04 seconds

Measurement of program volume complexity using fuzzy self-organizing control (퍼지 적응 제어를 이용한 프로그램 볼륨 복잡도 측정)

  • 김재웅
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.377-388
    • /
    • 2001
  • Software metrics provide effective methods for characterizing software. Metrics have traditionally been composed through the definition of an equation, but this approach restricted within a full understanding of every interrelationships among the parameters. This paper use fuzzy logic system that is capable of uniformly approximating any nonlinear function and applying cognitive psychology theory. First of all, we extract multiple regression equation from the factors of 12 software complexity metrics collected from Java programs. We apply cognitive psychology theory in program volume factor, and then measure program volume complexity to execute fuzzy learning. This approach is sound, thus serving as the groundwork for further exploration into the analysis and design of software metrics.

  • PDF

Path Planning of Autonomous Guided Vehicle Using fuzzy Control & Genetic Algorithm (유전자 알고리즘과 퍼지 제어를 적용한 자율운송장치의 경로 계획)

  • Kim, Yong-Gug;Lee, Yun-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.397-406
    • /
    • 2000
  • Genetic algorithm is used as a means of search, optimization md machine learning, its structure is simple but it is applied to various areas. And it is about an active and effective controller which can flexibly prepare for changeable circumstances. For this study, research about an action base system evolving by itself is also being considered. There is to have a problem that depended entirely on heuristic knowledge of expert forming membership function and control rule for fuzzy controller design. In this paper, for forming the fuzzy control to perform self-organization, we tuned the membership function to the most optimal using a genetic algorithm(GA) and improved the control efficiency by the self-correction and generation of control rules.

  • PDF

Parking Control for a Container Trailer Truck Using Fuzzy Theory (퍼지이론을 이용한 컨테이너 트레일러ㆍ트럭의 주차제어)

  • 박계각
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 1999
  • A trailer truck is a major equipment for transporting containers, and its driving is difficult due to two degrees of freedom which exist in the joint part between truck and trailer. Especially Backing a trailer truck to a parking home is a difficult exercise for all but the most skilled truck drivers. Normal driving instincts lead to erroneous movements. When watching a truck driver backing toward a parking home, one often observes the driver backing, going forward, backing again, going forward, etc., and finally backing to the desired position along the parking home. This paper discusses the design of the controller to control the steering of a trailer truck while only backing up to a parking home from an initial position. In this paper, we propose a backing up control system for a container trailer truck using fuzzy theory where the primitive fuzzy control rules are macroscopically designed using an expert's knowledge, and the control rules are regulated by LIBL(Linguistic Instruction Based Learning) to enable to back up successfully the trailer tuck to a parking home from arbitrary initial position. The validity of the proposed parking control system is shown by applying it to some initial positions on the simulator for container trailer truck.

  • PDF

Intelligent Control Algorithm for the Adjustment Process During Electronics Production (전자제품생산의 조정고정을 위한 지능형 제어알고리즘)

  • 장석호;구영모;고택범;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.448-457
    • /
    • 1998
  • A neural network based control algorithm with fuzzy compensation is proposed for the automated adjustment in the production of electronic end-products. The process of adjustment is to tune the variable devices in order to examine the specified performances of the products ready prior to packing. Camcorder is considered as a target product. The required test and adjustment system is developed. The adjustment system consists of a NNC(neural network controller), a sub-NNC, and an auxiliary algorithm utilizing the fuzzy logic. The neural network is trained by means of errors between the outputs of the real system and the network, as well as on the errors between the changing rate of the outputs. Control algorithm is derived to speed up the learning dynamics and to avoid the local minima at higher energy level, and is able to converge to the global minimum at lower energy level. Many unexpected problems in the application of the real system are resolved by the auxiliary algorithms. As the adjustments of multiple items are related to each other, but the significant effect of performance by any specific item is not observed. The experimental result shows that the proposed method performs very effectively and are advantageous in simple architecture, extracting easily the training data without expertise, adapting to the unstable system that the input-output properties of each products are slightly different, with a wide application to other similar adjustment processes.

  • PDF

Signal Processing using Fuzzy Logic and Neural Network for Welding Gap Detection

  • Kim, Gwan-Hyung;Kim, Il;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.178-183
    • /
    • 2001
  • Welding is essential for the manufacture of a range of engineering components which may vary from very large structures such as ships and bridges to very complex structures such as aircraft engines, or miniature components for microelectronic applications. Especially, a domestic situation of the welding automation is still depend on the arc sensing system in comparison to the vision sensing system. Specially, the gap-detecting of workpiece using conventional arc sensor is proposed in this study. As a same principle, a welding current varies with the size of a welding gap. This study introduce to the fuzzy membership filter to cancel a high frequency noise of welding current, and ART2 which has the competitive learning network classifies the signal patterns the filtered welding signal. A welding current possesses a specific pattern according to the existence or the size of a welding gap. These specific patterns result in different classification in comparison with an occasion for no welding gap. The patterns in each case of 1mm, 2mm, 3mm and no welding gap are identified by the artificial neural network.

  • PDF

A Risk Classification Based Approach for Android Malware Detection

  • Ye, Yilin;Wu, Lifa;Hong, Zheng;Huang, Kangyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.959-981
    • /
    • 2017
  • Existing Android malware detection approaches mostly have concentrated on superficial features such as requested or used permissions, which can't reflect the essential differences between benign apps and malware. In this paper, we propose a quantitative calculation model of application risks based on the key observation that the essential differences between benign apps and malware actually lie in the way how permissions are used, or rather the way how their corresponding permission methods are used. Specifically, we employ a fine-grained analysis on Android application risks. We firstly classify application risks into five specific categories and then introduce comprehensive risk, which is computed based on the former five, to describe the overall risk of an application. Given that users' risk preference and risk-bearing ability are naturally fuzzy, we design and implement a fuzzy logic system to calculate the comprehensive risk. On the basis of the quantitative calculation model, we propose a risk classification based approach for Android malware detection. The experiments show that our approach can achieve high accuracy with a low false positive rate using the RandomForest algorithm.

Design and Implementation of Neural Network Controller with a Fuzzy Compensator for Hydraulic Servo-Motor (유압서보모터를 위한 퍼지보상기를 갖는 신경망제어기 설계 및 구현)

  • 김용태;이상윤;신위재;유관식
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.141-144
    • /
    • 2001
  • In this paper, we proposed a neural network controller with a fuzzy compensator which compensate a output of neural network controller. Even if learn by neural network controller, it can occur a bad results from disturbance or load variations. So in order to adjust above case. we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning an inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. In order to confirm a performance of the proposed controller, we implemented the controller using the DSP processor and applied in a hydraulic servo system. And then we observed an experimental results.

  • PDF

An Adaptive Fuzzy Current Controller with Neural Network For Field-Oriented Controller Induction Machine

  • Lee, Kyu-Chan;Lee, Hahk-Sung;Cho, Kyu-Bock;Kim, Sung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.227-230
    • /
    • 1993
  • Recently, the development of novel control methodology enables us to improve the performance of AC-machine drives by using pulse width modulation (PWM) technique. Usually, the dynamic characteristic of induction motor (IM) has been represented by the 5-th order nonlinear differential equation. This dynamics, however, can be reduced to 3-rd order dynamics by applying direct control of IM input current. This methodology concludes that it is much easier to control IM by means of the field-oriented methods employing the current controller. Therefore a precise current control is crucial to achieve a high control performance both in dynamic and steady state operations. This paper presents an adaptive fuzzy current controller with artificial neural network (ANN) for field-oriented controlled IM. This new control structure is able to adaptively minimize a current ripple while maintaining constant switching frequency. Especially the proposed controller employs neuro-computing philosophy as well as adaptive learning pattern recognizing principles with respect to variations of the system parameters. The proposed approach is applied to the IM drive system, and its performance is tested through various simulations. Simulation results show that the proposed system, compared among several known classical methods, has a superb performance.

  • PDF

Fuzzy and Polynomial Neuron Based Novel Dynamic Perceptron Architecture (퍼지 및 다항식 뉴론에 기반한 새로운 동적퍼셉트론 구조)

  • Kim, Dong-Won;Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2762-2764
    • /
    • 2001
  • In this study, we introduce and investigate a class of dynamic perceptron architectures, discuss a comprehensive design methodology and carry out a series of numeric experiments. The proposed dynamic perceptron architectures are called as Polynomial Neural Networks(PNN). PNN is a flexible neural architecture whose topology is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but is generated on the fly. In this sense, PNN is a self-organizing network. PNN has two kinds of networks, Polynomial Neuron(FPN)-based and Fuzzy Polynomial Neuron(FPN)-based networks, according to a polynomial structure. The essence of the design procedure of PN-based Self-organizing Polynomial Neural Networks(SOPNN) dwells on the Group Method of Data Handling (GMDH) [1]. Each node of the SOPNN exhibits a high level of flexibility and realizes a polynomial type of mapping (linear, quadratic, and cubic) between input and output variables. FPN-based SOPNN dwells on the ideas of fuzzy rule-based computing and neural networks. Simulations involve a series of synthetic as well as experimental data used across various neurofuzzy systems. A detailed comparative analysis is included as well.

  • PDF

On-Line Travel Time Estimation Methods using Hybrid Neuro Fuzzy System for Arterial Road (검지자료합성을 통한 도시간선도로 실시간 통행시간 추정모형)

  • 김영찬;김태용
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.171-182
    • /
    • 2001
  • Travel Time is an important characteristic of traffic conditions in a road network. Currently, there are so many road users to get a unsatisfactory traffic information that is provided by existing collection systems such as, Detector, Probe car, CCTV and Anecdotal Report. This paper presents the results achieved with Data Fusion Model, Hybrid Neuro Fuzzy System for on - line estimation of travel times using RTMS(Remote Traffic Microwave Sensor) and Probe Data in the signalized arterial road. Data Fusion is the most important process to compose the various of data which can present real value for traffic situation and is also the one of the major process part in the TIC(Traffic Information Center) for analyzing and processing data. On-line travel time estimation methods(FALEM) on the basis of detector data has been evaluated by real value under KangNam Test Area.

  • PDF