• 제목/요약/키워드: Fuzzy image enhancement

검색결과 33건 처리시간 0.025초

An Optimized Multiple Fuzzy Membership Functions based Image Contrast Enhancement Technique

  • Mamoria, Pushpa;Raj, Deepa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1205-1223
    • /
    • 2018
  • Image enhancement is an emerging method for analyzing the images clearer for interpretation and analysis in the spatial domain. The goal of image enhancement is to serve an input image so that the resultant image is more suited to the particular application. In this paper, a novel method is proposed based on Mamdani fuzzy inference system (FIS) using multiple fuzzy membership functions. It is observed that the shape of membership function while converting the input image into the fuzzy domain is the essential important selection. Then, a set of fuzzy If-Then rule base in fuzzy domain gives the best result in image contrast enhancement. Based on a different combination of membership function shapes, a best predictive solution can be determined which can be suitable for different types of the input image as per application requirements. Our result analysis shows that the quality attributes such as PSNR, Index of Fuzziness (IOF) parameters give different performances with a selection of numbers and different sized membership function in the fuzzy domain. To get more insight, an optimization algorithm is proposed to identify the best combination of the fuzzy membership function for best image contrast enhancement.

퍼지 멤버쉽 값을 이용한 히스토그램 명세화 (Automatic Histogram Specification Based on Fuzzy Membership Value for Image Enhancement)

  • 황태호;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.317-320
    • /
    • 2002
  • In this paper, an automatic histogram specification method is proposed for image enhancement, Fuzzy membership value is adopted for the representation of image histogram. The desired PDF is automatically constructed by the fuzzy membership value. Fuzzy membership value is extracted from dark membership, bright membership function and original histogram. The effectual results are demonstrated by desired PDF which meet the image enhancement requirements. The performance and effectiveness are shown by the analysis and the resultant image in comparison with histogram equalization method.

IAFC 모델을 이용한 영상 대비 향상 기법 (An Image Contrast Enhancement Technique Using Integrated Adaptive Fuzzy Clustering Model)

  • 이금분;김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.279-282
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) Model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved MEC can classify the image into two classes with unsupervised teaming rule. The proposed method is applied to some experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

K-means 알고리듬을 이용한 퍼지 영상 대비 강화 기법 (A Fuzzy Image Contrast Enhancement Technique using the K-means Algorithm)

  • 정준희;김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.295-299
    • /
    • 2002
  • This paper presents an image contrast enhancement technique for improving low contrast images. We applied fuzzy logic to develop an image contrast enhancement technique in the viewpoint of considering that the low pictorial information of a low contrast image is due to the vaguness or fuzziness of the multivalued levels of brightness rather than randomness. The fuzzy image contrast enhancement technique consists of three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. In the stage of image fuzzification, we need to select a crossover point. To select the crossover point automatically the K-means algorithm is used. The problem of crossover point selection can be considered as the two-category, object and background, classification problem. The proposed method is applied to an experimental image with 256 gray levels and the result of the proposed method is compared with that of the histogram equalization technique. We used the index of fuzziness as a measure of image quality. The result shows that the proposed method is better than the histogram equalization technique.

Image Analysis Fuzzy System

  • Abdelwahed Motwakel;Adnan Shaout;Anwer Mustafa Hilal;Manar Ahmed Hamza
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.163-177
    • /
    • 2024
  • The fingerprint image quality relies on the clearness of separated ridges by valleys and the uniformity of the separation. The condition of skin still dominate the overall quality of the fingerprint. However, the identification performance of such system is very sensitive to the quality of the captured fingerprint image. Fingerprint image quality analysis and enhancement are useful in improving the performance of fingerprint identification systems. A fuzzy technique is introduced in this paper for both fingerprint image quality analysis and enhancement. First, the quality analysis is performed by extracting four features from a fingerprint image which are the local clarity score (LCS), global clarity score (GCS), ridge_valley thickness ratio (RVTR), and the Global Contrast Factor (GCF). A fuzzy logic technique that uses Mamdani fuzzy rule model is designed. The fuzzy inference system is able to analyse and determinate the fingerprint image type (oily, dry or neutral) based on the extracted feature values and the fuzzy inference rules. The percentages of the test fuzzy inference system for each type is as follow: For dry fingerprint the percentage is 81.33, for oily the percentage is 54.75, and for neutral the percentage is 68.48. Secondly, a fuzzy morphology is applied to enhance the dry and oily fingerprint images. The fuzzy morphology method improves the quality of a fingerprint image, thus improving the performance of the fingerprint identification system significantly. All experimental work which was done for both quality analysis and image enhancement was done using the DB_ITS_2009 database which is a private database collected by the department of electrical engineering, institute of technology Sepuluh Nopember Surabaya, Indonesia. The performance evaluation was done using the Feature Similarity index (FSIM). Where the FSIM is an image quality assessment (IQA) metric, which uses computational models to measure the image quality consistently with subjective evaluations. The new proposed system outperformed the classical system by 900% for the dry fingerprint images and 14% for the oily fingerprint images.

뉴로 퍼지를 이용한 포탈 영상의 개선 알고리듬의 연구 (Enhancement Alogorithm of Portal Image using Neuo-Fuzzy)

  • 허수진;신동익
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권5호
    • /
    • pp.527-535
    • /
    • 2000
  • 대부분의 포탈영상이 그에 상응하는 시뮬레이터 영상을 참조 영상으로 하여 방사선치료 계획을 수행하고 있다. 이것은 선형가속기의 높은 에너지 X선으로서 얻어지는 포탈 영상의 물리적 특성 때문에, 구조적으로 대단히 불량한 포탈 영상의 개선과 잃어버린 영상 정보의 복원에 시뮬레이터 영상 자체에서의 영상정보를 이용할 수 있다는 가능성을 보여주고 있는 것이다. 본 연구에서는 최대 퍼지 엔트로피를 평가함수로 이용한 유전자 알고리듬을 사용하여 영상에서의 퍼지 영역을 자동적으로 결정하고, 그것을 멤버쉽 함수에서 적용하여 퍼지영상 개선 기법으로서 포탈 영상과 시뮬레이터 영상을 개선한 후, 잡음이 중첩된 시뮬레이터 영상들로서 연관기억장치를 학습시키고 여기에 퍼지 방법으로 개선시킨 포탈 영상을 입력하여 기존의 영상기법으로 처리된 영상보다 좋은 포탈 영상을 얻을 수 있었다.

  • PDF

영상 향상을 위한 자동 임계점 선택 및 대비 강화 기법 (Automatic Threshold Selection and Contrast Intensification Technique for Image Enhancement)

  • 이금분;조범준
    • 한국멀티미디어학회논문지
    • /
    • 제11권4호
    • /
    • pp.462-470
    • /
    • 2008
  • 본 논문은 저대비에 의한 영상 정보의 불확실성이 화소가 가지고 있는 명암도의 모호성과 애매성에 근거한다는 점에서 퍼지 변환 함수를 적용하여 영상 향상을 기하고자 한다. 명암도 분포가 한쪽으로 치우친 저대비 영상의 문제를 해결하고자 k-means 알고리즘을 사용하여 물체와 배경을 구분할 수 있는 자동 임계점을 찾고 이를 기준으로 영상의 밝은 부분과 어두운 부분의 대비 향상을 가져올 수 있도록 퍼지 변환 함수를 적용한다. 퍼지 변환 함수는 영상 향상을 위해 3단계-입력 영상을 퍼지 영역으로 변환시키는 퍼지화 단계와 대비를 향상시키는 대비 강화 단계 그리고 퍼지 영역을 다시 영상 영역으로 변환시키는 비퍼지화 단계로 제시된다. 향상된 영상의 성능을 평가하고자 퍼지성 지수와 엔트로피 지수를 제시하여 이를 히스토그램 균등화 기법과 비교하고 실험결과로 성능의 우수함을 보여준다.

  • PDF

퍼지 논리를 이용한 Subpixel 정확도 Edge 검출 (Edge detection at subpixel accuracy using fuzzy logic)

  • 김영욱;양우석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.105-108
    • /
    • 1996
  • In this paper, we present an interpolation schema for image resolution enhancement using fuzzy logic. Proposed algorithm can recover both low and high frequency information in image data. In general, interpolation techniques are based on linear operators which are essentially details in the original image. In our fuzzy approach, the operator itself balances the strength of its sharpening and noise suppressing components according to the properties of the input image data. The proposed interpolation algorithm is performed in three step. First logic reasoning is applied to coarsely interpret the high frequency information. These results are combined to obtain the optical output. Using our approach, resolution of the original image can be applied to various kind of image processing topics such as image enhancement, subpixel edge detection, and filtering.

  • PDF

컴퓨터 기법을 이용한 초음파 영상에서의 지방간 분류 (The Classification of Fatty Liver by Ultrasound Imaging using Computerizing Method)

  • 장현우;김광백;김창원
    • 한국정보통신학회논문지
    • /
    • 제17권9호
    • /
    • pp.2206-2212
    • /
    • 2013
  • 본 논문은 Fuzzy Contrast Enhancement 기법과 FCM을 이용하여 대비를 개선한 후, Fuzzy Contrast Enhancement를 간과 신장의 초음파 영상에 적용하여 지방간 농도 수치를 분류하는 방법을 제시한다. 간, 신장 영역을 촬영한 초음파 영상에서 촬영 정보나 눈금자 등과 같이 필요 없는 부분을 잡음으로 간주하여, 제거한 ROI 영상을 추출하고, Fuzzy Contrast Enhancement 알고리즘을 이용하여 명암 대비를 강조한다. Fuzzy Contrast Enhancement 기법이 적용된 간, 신장 영역 영상에서 평균 이진화를 적용한 후, 평균 이진화를 적용한 영상에 Blob 알고리즘을 적용하여 간, 신장 실질 영역의 ROI 영상을 추출한다. 추출한 간 영역과 신장영역의 ROI 영상을 FCM을 이용하여, 10개의 명암도 Level로 각 각 분류한 후, 분류된 간, 신장 실질 영역의 명암도 Level 중 많이 분포된 명암도 Level을 기준으로 간, 신장 실질 영역의 대표 명암도를 추출한다. 제안된 방법을 간, 신장 영역을 촬영한 초음파 영상에 적용하여 간의 지방도를 분류한 결과, 영상의학과 전문의의 판독과 일치하여 향후 지방간의 진단에 효과적으로 적용할 수 있는 방법이 될 수 있을 것으로 사료된다.

Enhancing Medical Images by New Fuzzy Membership Function Median Based Noise Detection and Filtering Technique

  • Elaiyaraja, G.;Kumaratharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2197-2204
    • /
    • 2015
  • In recent years, medical image diagnosis has growing significant momentous in the medicinal field. Brain and lung image of patient are distorted with salt and pepper noise is caused by moving the head and chest during scanning process of patients. Reconstruction of these images is a most significant field of diagnostic evaluation and is produced clearly through techniques such as linear or non-linear filtering. However, restored images are produced with smaller amount of noise reduction in the presence of huge magnitude of salt and pepper noises. To eliminate the high density of salt and pepper noises from the reproduction of images, a new efficient fuzzy based median filtering algorithm with a moderate elapsed time is proposed in this paper. Reproduction image results show enhanced performance for the proposed algorithm over other available noise reduction filtering techniques in terms of peak signal -to -noise ratio (PSNR), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), image enhancement factor (IMF) and structural similarity (SSIM) value when tested on different medical images like magnetic resonance imaging (MRI) and computer tomography (CT) scan brain image and CT scan lung image. The introduced algorithm is switching filter that recognize the noise pixels and then corrects them by using median filter with fuzzy two-sided π- membership function for extracting the local information.