• Title/Summary/Keyword: Fuzzy genetic algorithm

Search Result 611, Processing Time 0.028 seconds

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

The Fuzzy Modeling by Virus-messy Genetic Algorithm (바이러스-메시 유전 알고리즘에 의한 퍼지 모델링)

  • 최종일;이연우;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.157-160
    • /
    • 2000
  • This paper deals with the fuzzy modeling for the complex and uncertain system in which conventional and mathematical models may fail to give satisfactory results. mGA(messy Genetic Algorithm) has more effective and adaptive structure than sGA with respect to using changeable-length string and VEGA(Virus Evolution Genetic) Algorithm) can search the global and local optimal solution simultaneously with reverse transcription operator and transduction operator. Therefore in this paper, the optimal fuzzy model is obtained using Virus-messy Genetic Algorithm(Virus-mGA). In this method local information is exchanged in population so that population may sustain genetic divergence. To prove the surperioty of the proposed approach, we provide the numerical example.

  • PDF

Parallel Genetic Algorithm using Fuzzy Logic (퍼지 논리를 이용한 병렬 유전 알고리즘)

  • An Young-Hwa;Kwon Key-Ho
    • The KIPS Transactions:PartA
    • /
    • v.13A no.1 s.98
    • /
    • pp.53-56
    • /
    • 2006
  • Genetic algorithms(GA), which are based on the idea of natural selection and natural genetics, have proven successful in solving difficult problems that are not easily solved through conventional methods. The classical GA has the problem to spend much time when population is large. Parallel genetic algorithm(PGA) is an extension of the classical GA. The important aspect in PGA is migration and GA operation. This paper presents PGAs that use fuzzy logic. Experimental results show that the proposed methods exhibit good performance compared to the classical method.

Comparison of Adaptive Operators in Genetic Algorithms (유전알고리즘에서 적응적 연산자들의 비교연구)

  • Yun, Young-Su;Seo, Seoun-Lock
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.189-203
    • /
    • 2002
  • In this paper we compare the performances of adaptive operators in genetic algorithm. For the adaptive operators, the crossover and mutation operators of genetic algorithm are considered. One fuzzy logic controller is developed in this paper and two heuristics is presented from conventional works for constructing the operators. The fuzzy logic controller and two conventional heuristics adaptively regulate the rates of the operators during genetic search process. All the algorithms are tested and analyzed in numerical examples. Finally, the best algorithm is recommended.

  • PDF

Bearing Fault Diagnosis Using Fuzzy Inference Optimized by Neural Network and Genetic Algorithm

  • Lee, Hong-Hee;Nguyen, Ngoc-Tu;Kwon, Jeong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.353-357
    • /
    • 2007
  • The bearing diagnostics method is presented in this paper using fuzzy inference based on vibration data. Both time-domain and frequency-domain features are used as input data for bearing fault detection. The Adaptive Network based Fuzzy Inference System (ANFIS) and Genetic Algorithm (GA) have been proposed to select the fuzzy model input and output parameters. Training results give the optimized fuzzy inference system for bearing diagnosis based on measured vibration data. The result is also tested with other sets of bearing data to illustrate the reliability of the chosen model.

Optimization of fuzzy logic controller using genetic algorithm (유전 알고리듬을 이용한 지능형 퍼지 제어기에 관한 연구)

  • Jang, Wook;Son, Yoo-Seok;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.960-963
    • /
    • 1996
  • In this paper, the optimization of a fuzzy controller using genetic algorithm is studied. The fuzzy controller has been widely applied to industries because it is highly flexible, robust easy to implement and suitable for complex systems. Generally, the design of fuzzy controller has difficulties in determining the structure of the rules and the membership functions. To solve these problems, the proposed method optimizes the structure of fuzzy rules and the parameters of membership functions simultaneously in an off-line method. The proposed method is evaluated through computer simulations.

  • PDF

A modified strategy for DNA coding based genetic algorithm and its experiment

  • Kyungwon Jang;Taechon Ahn;Lee, Dongyoon;Kim, Seonik;Jinhyun Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.70.1-70
    • /
    • 2002
  • In the fuzzy applications and theories, it is very important to consider how to design the optimal fuzzy model from short training data, in order to construct the reasonable fuzzy model for identifying the practical process. There are several concerns to be confirmed for efficient fuzzy model design. One of concern is the optimization problem of the fuzzy model. In various applications, the genetic algorithm is widely applied to obtain optimal fuzzy model and other cases that adopt evolutionary mechanism of the nature. If we use natural selection and multiplication operation of the genetic algorithm, early convergence to local minimum can be occurred. In other word, we can find only optimum...

  • PDF

Online Fuzzy Modelling of Nonlinear Systems Using a Genetic Algorithm (유전알고리즘을 이용한 비선형 시스템의 온라인 퍼지 모델링)

  • 이현식;오정환;신위재;김종화;진강규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.80-87
    • /
    • 1998
  • This paper presents and online scheme for fuzzy modelling of nonlinear systems, based on the model adjustment technique and the genetic algorithm technique. The fuzzy model is characterized by fuzzy "if-then" rules which represent locally linear input-output relations whose consequence parts are defined as subsystems of a nonlinear sysem. The discrete-time model for each subsystem is obtained to deal with initalization and unmeasurable signal problems in online estimation and the final output of the fuzzy model is computed from the outputs of the discrete-time models. Then, the parameters of both the premise and consequence parts of the fuzzy model are adjusted by a genetic algorithm. A set of simulation works is carried out to demonstrate the effectiveness of the proposed method.ed method.

  • PDF

Autonomous Guided Vehicle Control Using GA-Fuzzy System (GA-Fuzzy 시스템을 이용한 무인 운송차의 제어)

  • 나영남;손영수;오창윤;이강현;배상현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.45-55
    • /
    • 1997
  • According to the increase of factory-automation in the field of production, the importance of autonomous guided vehicle's(AGV) role is also increased. The study about an active and effective controller which can flexibly prepare for the changeable circumstance is in progressed. For this study, the research about action base system to evolve by itself is also being actively considered. In this paper, we composed an active and effective AGV fuzzy controller to be able to do self-organization. For composing it, we tuned suboptimally membership function using genetic algorithm(GA) and improved the control efficiency by the self-correction and generating the control rules. Self-organizing controlled(S0C) fuzzy controller proposed in the paper is capable of self-organizing by using the characteristics of fuzzy controller and genetic algorithm. It intuitionally controls AGV and easily adapts to the circumstance.

  • PDF

Fuzzy Traffic Controller with Control Rules and Membership Functions Generated by Genetic Algorithms (유전 알고리즘에 의해 생성된 제어규칙과 멤버쉽함수를 갖는 퍼지 교통 제어기)

  • Kim, Byeong-Man;Kim, Jong-Wan;Huh, Nam-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.123-128
    • /
    • 2002
  • A fuzzy traffic controller with the control rules and the membership functions generated by using genetic algorithm is presented for crossroad management. Conventional fuzzy traffic controllers use control rules and membership functions generated by human operators. However, this approach does not guarantee the optimal solution to design fuzzy control system. Genetic algorithm is a good solution for an optimal problem requiring domain-specific knowledge that is often heuristic. In this paper, we use genetic algorithms to automatically determine the near optimal rules and their membership functions of fuzzy traffic controllers. The effectiveness of our method was shown through simulation of crossroad network.