• Title/Summary/Keyword: Fuzzy genetic algorithm

Search Result 611, Processing Time 0.027 seconds

A new model approach to predict the unloading rock slope displacement behavior based on monitoring data

  • Jiang, Ting;Shen, Zhenzhong;Yang, Meng;Xu, Liqun;Gan, Lei;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • To improve the prediction accuracy of the strong-unloading rock slope performance and obtain the range of variation in the slope displacement, a new displacement time-series prediction model is proposed, called the fuzzy information granulation (FIG)-genetic algorithm (GA)-back propagation neural network (BPNN) model. Initially, a displacement time series is selected as the training samples of the prediction model on the basis of an analysis of the causes of the change in the slope behavior. Then, FIG is executed to partition the series and obtain the characteristic parameters of every partition. Furthermore, the later characteristic parameters are predicted by inputting the earlier characteristic parameters into the GA-BPNN model, where a GA is used to optimize the initial weights and thresholds of the BPNN; in the process, the numbers of input layer nodes, hidden layer nodes, and output layer nodes are determined by a trial method. Finally, the prediction model is evaluated by comparing the measured and predicted values. The model is applied to predict the displacement time series of a strong-unloading rock slope in a hydropower station. The engineering case shows that the FIG-GA-BPNN model can obtain more accurate predicted results and has high engineering application value.

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

Fuzzy modelling for design of ship's autopilot (선박 자동조타기 설계를 위한 퍼지모델링)

  • Ahn, Jong-Kap;Lee, Chang-Ho;Lee, Yun-Hyung;Son, Jung-Ki;Lee, Soo-Lyong;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The T-S fuzzy model of a ship is made from the nonlinear extension of Nomoto's 2nd-order model as the previous step before designing of the fuzzy type autopilot to consider the design specifications and the economic efficiency. The T-S fuzzy model is considered as a design variable of the heading angular velocity of ship. The linear models will be combined as "IF-THEN" fuzzy rules after get in this one area of the linear model(sub-system) by change of the heading angular velocity of a ship. The dynamic characteristic of a ship with the parameters of linear models and fuzzy membership functions are estimated to match by using the model adjustment technic with input/output data and a RCGA.

Fuzzy Controller Design of PC Based for Solar Tracking System (태양 추적시스템을 위한 PC 기반의 퍼지제어기 설계)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.86-94
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in of order to increase an output of the PV(Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studies. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

Selection Method of Fuzzy Partitions in Fuzzy Rule-Based Classification Systems (퍼지 규칙기반 분류시스템에서 퍼지 분할의 선택방법)

  • Son, Chang-S.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.360-366
    • /
    • 2008
  • The initial fuzzy partitions in fuzzy rule-based classification systems are determined by considering the domain region of each attribute with the given data, and the optimal classification boundaries within the fuzzy partitions can be discovered by tuning their parameters using various learning processes such as neural network, genetic algorithm, and so on. In this paper, we propose a selection method for fuzzy partition based on statistical information to maximize the performance of pattern classification without learning processes where statistical information is used to extract the uncertainty regions (i.e., the regions which the classification boundaries in pattern classification problems are determined) in each input attribute from the numerical data. Moreover the methods for extracting the candidate rules which are associated with the partition intervals generated by statistical information and for minimizing the coupling problem between the candidate rules are additionally discussed. In order to show the effectiveness of the proposed method, we compared the classification accuracy of the proposed with those of conventional methods on the IRIS and New Thyroid Cancer data. From experimental results, we can confirm the fact that the proposed method only considering statistical information of the numerical patterns provides equal to or better classification accuracy than that of the conventional methods.

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

River stage forecasting models using support vector regression and optimization algorithms (Support vector regression과 최적화 알고리즘을 이용한 하천수위 예측모델)

  • Seo, Youngmin;Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.606-609
    • /
    • 2015
  • 본 연구에서는 support vector regression (SVR) 및 매개변수 최적화 알고리즘을 이용한 하천수위 예측모델을 구축하고 이를 실제 유역에 적용하여 모델 효율성을 평가하였다. 여기서, SVR은 하천수위를 예측하기 위한 예측모델로서 채택되었으며, 커널함수 (Kernel function)로서는 radial basis function (RBF)을 선택하였다. 최적화 알고리즘은 SVR의 최적 매개변수 (C?, cost parameter or regularization parameter; ${\gamma}$, RBF parameter; ${\epsilon}$, insensitive loss function parameter)를 탐색하기 위하여 적용되었다. 매개변수 최적화 알고리즘으로는 grid search (GS), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC) 알고리즘을 채택하였으며, 비교분석을 통해 최적화 알고리즘의 적용성을 평가하였다. 또한 SVR과 최적화 알고리즘을 결합한 모델 (SVR-GS, SVR-GA, SVR-PSO, SVR-ABC)은 기존에 수자원 분야에서 널리 적용되어온 신경망(Artificial neural network, ANN) 및 뉴로퍼지 (Adaptive neuro-fuzzy inference system, ANFIS) 모델과 비교하였다. 그 결과, 모델 효율성 측면에서 SVR-GS, SVR-GA, SVR-PSO 및 SVR-ABC는 ANN보다 우수한 결과를 나타내었으며, ANFIS와는 비슷한 결과를 나타내었다. 또한 SVR-GA, SVR-PSO 및 SVR-ABC는 SVR-GS보다 상대적으로 우수한 결과를 나타내었으며, 모델 효율성 측면에서 SVR-PSO 및 SVR-ABC는 가장 우수한 모델 성능을 나타내었다. 따라서 본 연구에서 적용한 매개변수 최적화 알고리즘은 SVR의 매개변수를 최적화하는데 효과적임을 확인할 수 있었다. SVR과 최적화 알고리즘을 이용한 하천수위 예측모델은 기존의 ANN 및 ANFIS 모델과 더불어 하천수위 예측을 위한 효과적인 도구로 사용될 수 있을 것으로 판단된다.

  • PDF

Nuclear reactor vessel water level prediction during severe accidents using deep neural networks

  • Koo, Young Do;An, Ye Ji;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.723-730
    • /
    • 2019
  • Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be accurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performed better than the cascaded fuzzy neural network model of the previous study. Consequently, the DNN model is considered to perform well enough to provide supporting information on the RV water level to operators.

Sensorless Speed Control of Induction Motor using Am and FMRLC (ANN과 FMRLC를 이용한 유도전동기의 센서리스 속도제어)

  • Nam Su-Myeong;Lee Jung-Chul;Lee Hong-Gyun;Lee Young-Sil;Part Bung-Sang;Chung Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.38-41
    • /
    • 2004
  • Artificial intelligence control that use Fuzzy, Neural network, genetic algorithm etc. in the speed control of induction motor recently is studied much. Also, sensors such as Encoder and Resolver are used to receive the speed of induction motor and information of position. However, this control method or sensor use receives much effects in surroundings environment change and react sensitively to parameter change of electric motor and control Performance drops. Presume the speed and position of induction motor by ANN in this treatise, and because using FMRLC that is consisted of two Fuzzy Logic, can correct Fuzzy Rule Base through teaming and save good response special quality in change of condition such as change of parameter.

  • PDF

Design of a Fuzzy Logic Controller Using Response Surface Methodology (반응표면분석법을 이용한 퍼지제어기 설계)

  • 이세헌
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.591-597
    • /
    • 1999
  • When fuzzy logic controllers which are designed based on plant models and intuitive base are applied to real plants, the control systems may not give satisfactory control results due to the modeling error and the lack of knowledge on the plants. In that case. the controller must be retuned by adjusting the control parameters; this retuning process may require a large number of trial-and-error evaluations and thus much time and cost. In order to resolve these problems, we propose a systematic and efficient procedure for designing a fuzzy logic controller using response surface methodology. First wc select the initial optimal conditions of control parameters using a genetic algorithm, in which a nominal plant model with intrinsic modeling errors is used. And then we determine the tinal optimal conditions of the control parameters using response surface methodology. Computer simulations are performed to verify the capability of the proposed method.

  • PDF