• Title/Summary/Keyword: Fuzzy genetic algorithm

Search Result 611, Processing Time 0.026 seconds

Design of a Robust Controller for the Butterfly Valve with Considering the Friction (마찰을 고려한 버터플라이 밸브의 강인 제어기 설계)

  • Choi, Jeongju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.824-830
    • /
    • 2013
  • We propose a tracking control system for butterfly valves. A sliding mode controller with a fuzzy-neural network algorithm was applied to the design of the tracking control system. The control scheme used the real-time update law for the unmodeled system dynamics using a fuzzy-neural network algorithm. The performance of the proposed control system was assessed through a range of experiments.

Fuzzy Controller Design of 2 D.O.F of Wheeled Mobile Robot using Niche Meta Genetic Algorithm (Niche Meta 유전 알고리즘을 이용한 2자유도 이동 로봇의 퍼지 제어기 설계)

  • Kim Sung-Hoe;Kim Ki-Yeoul
    • The Journal of Information Technology
    • /
    • v.5 no.4
    • /
    • pp.73-79
    • /
    • 2002
  • In this paper, I will propose the Niche-Meta Genetic Algorithm that has a multi-mutation operator for design of fuzzy controller. The gene in the proposed algorithm is formed by several parameters that represent the crossover rate, mutation rate and input-output membership functions. The optimization of fuzzy membership function is performed with local search on sub-population and the optimal structure is constructed with global search on total-population. The multi-mutation is selected under basis of the result of local evolution. A simulation for 2 D.O.F wheeled-mobile robot is showed to prove the efficiency of the proposed algorithm

  • PDF

Bayesian Nonlinear Blind Channel Equalizer based on Gaussian Weighted MFCM

  • Han, Soo-Whan;Park, Sung-Dae;Lee, Jong-Keuk
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1625-1634
    • /
    • 2008
  • In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.

  • PDF

Fuzzy Optimum Design of Plane Steel Frames Using Refined Plastic Hinge Analysis and a Genetic Algorithm (개선소성힌지해석과 유전자 알고리듬을 이용한 평면 강골조 구조물의 퍼지최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Shon, Su Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.147-160
    • /
    • 2006
  • GA-based fuzzy optimum design algorithm incorporated with the refined plastic hinge analysis method is presented in this study. In the refined plastic hinge analysis method, geometric nonlinearity is considered by using the stability functions of the beam-column members. Material nonlinearity is also considered by using the gradual stiffness degradation model, which considers the effects of residual stresses, moment redistribution through the occurence of plastic hinges, and the geometric imperfections of the members. In the genetic algorithm, the tournament selection method and the total weight of the steel frames. The requirements of load-carrying capacity, serviceability, ductility, and constructabil ity are used as the constraint conditions. In fuzzy optimization, for crisp objective function and fuzzy constraint s, the tolerance that is accepted is 5% of the constraints. Furthermore, a level-cut method is presented from 0 to 1 at a 0 .2 interval, with the use of the nonmembership function, to solve fuzzy-optimization problems. The values of conventional GA optimization and fuzzy GA optimization are compared in several examples of steel structures.

GA-based Fuzzy Modelling of Nonlinear Systems (비선형시스템의 유전알고리즘에 기초한 퍼지 모델링)

  • 이현식;진강규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.368-373
    • /
    • 1998
  • This paper presents a GA-based fuzzy modelling scheme of nonlinear systems. The fuzzy model is a type of the Sugeno-Tagaki's fuzzy model whose consequence parts are described by a linear continuous dynamic equation as subsystem of a nonlinear system. The centers and width of the membership functions of the fuzzy sets defined over the input space and the orders and parameters of subsystems in the consequence parts are adjusted by a genetic algorithm. The effectiveness of the proposed method is verified

  • PDF

Fuzzy Control of Anti -Sway Motion for a Remote Crane Operation

  • Park, Sun-Won;Kang, E-Sok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.42.1-42
    • /
    • 2001
  • This paper presents a fuzzy-based method for classification skin color object in a complex background under varying illumination. Parameters of fuzzy rule base are generated using a genetic algorithm(GA). The color model is used in the YCbCr color space. We propose a unique fuzzy system in order to accommodate varying background color and illumination condition. This fuzzy system approach to skin color classification is discussed along with an overview of YCbCr color space.

  • PDF

Design of a Hierarchically Structured Gas Identification System Using Fuzzy Sets and Rough Sets (퍼지집합과 러프집합을 이용한 계층 구조 가스 식별 시스템의 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.419-426
    • /
    • 2018
  • An useful and effective design method for the gas identification system is presented in this paper. The proposed gas identification system adopts hierarchical structure with two level rule base combining fuzzy sets with rough sets. At first, a hybrid genetic algorithm is used in grouping the array sensors of which the measured patterns are similar in order to reduce the dimensionality of patterns to be analyzed and to make rule construction easy and simple. Next, for low level identification, fuzzy inference systems for each divided group are designed by using TSK fuzzy rule, which allow handling the drift and the uncertainty of sensor data effectively. Finally, rough set theory is applied to derive the identification rules at high level which reflect the identification characteristics of each divided group. Thus, the proposed method is able to accomplish effectively dimensionality reduction as well as accurate gas identification. In simulation, we demonstrated the effectiveness of the proposed methods by identifying five types of gases.

Intelligent Navigation Algorithm for Mobile Robots based on Optimized Fuzzy Logic (최적화된 퍼지로직 기반 이동로봇의 지능주행 알고리즘)

  • Zhao, Ran;Lee, Hong-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.440-445
    • /
    • 2018
  • The work presented in this paper deals with a navigation problem for a multiple mobile robots in unknown dynamic environments. The environments are completely unknown to the robots; thus, proximity sensors installed on the robots' bodies must be used to detect information about the surroundings. In order to guide the robots along collision-free paths to reach their goal positions, a navigation method based on a combination of primary strategies has been developed. Most of these strategies are achieved by means of fuzzy logic controllers, and are uniformly applied in every robot. In order to improve the performance of the proposed fuzzy logic, the genetic algorithms were used to evolve the membership functions and rules set of the fuzzy controller. The simulation experiments verified that the proposed method effectively addresses the navigation problem.

Enhancement Alogorithm of Portal Image using Neuo-Fuzzy (뉴로 퍼지를 이용한 포탈 영상의 개선 알고리듬의 연구)

  • 허수진;신동익
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.527-535
    • /
    • 2000
  • For a reliable patient set-up verification, better portal films are needed to track relevant features. Simulator films are compared with portal films as a reference image in radiotherapy planning. This shows some possibilities of the use of image information of simulator images for enhancement and restorations of portal images which are very poor in quality compared with the simulator images. This paper present an approach that combine an associative memory, a kind of artificial neural networks with fuzzy image enhancement technique using genetic algorithm which determines the fuzzy region of membership function by the use of maximum entropy principles. A higher portal image quality than conventional technique is achieved.

  • PDF

Traffic Signal Control with Fuzzy Membership Functions Generated by Genetic Algorithms (유전 알고리즘에 의해 생성된 퍼지 소속함수를 갖는 교통 신호 제어)

  • Kim, Jong-Wan;Kim, Byeong-Man;Kim, Ju-Youn
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.78-84
    • /
    • 1998
  • In this paper, a fuzzy traffic controller using genetic algorithms is presented. Conventional fuzzy traffic controllers use membership functions generated by humans. However, this approach does not guarantee the optimal solution to design the fuzzy controller. Genetic algorithm is a good problem solving method requiring domain-specific knowledge that is often heuristic. To find fuzzy membership functions showing good performance, a fitness function must be defined. However it's not easy in traffic control to define such a function as a numeric expression. Thus, we use simulation approach, namely, the fitness value of a solution is determined by use of a performance measure that is obtained by traffic simulator. The proposed method outperforms the conventional fuzzy controllers.

  • PDF