DOI QR코드

DOI QR Code

Intelligent Navigation Algorithm for Mobile Robots based on Optimized Fuzzy Logic

최적화된 퍼지로직 기반 이동로봇의 지능주행 알고리즘

  • Zhao, Ran (Dept. of Electrical Engineering, Korea University of Technology and Education) ;
  • Lee, Hong-Kyu (Dept. of Electrical Engineering, Korea University of Technology and Education)
  • Received : 2018.06.15
  • Accepted : 2018.06.29
  • Published : 2018.06.30

Abstract

The work presented in this paper deals with a navigation problem for a multiple mobile robots in unknown dynamic environments. The environments are completely unknown to the robots; thus, proximity sensors installed on the robots' bodies must be used to detect information about the surroundings. In order to guide the robots along collision-free paths to reach their goal positions, a navigation method based on a combination of primary strategies has been developed. Most of these strategies are achieved by means of fuzzy logic controllers, and are uniformly applied in every robot. In order to improve the performance of the proposed fuzzy logic, the genetic algorithms were used to evolve the membership functions and rules set of the fuzzy controller. The simulation experiments verified that the proposed method effectively addresses the navigation problem.

본 논문은 미지 유동환경에서 다중 이동로봇들의 주행문제에 대한 연구결과이다. 여기에서 환경은 로봇에게는 알려져 있지 않기 때문에 로봇의 몸체에 부착된 근접센서들을 이용하여 주변환경들을 감지하여야 하고, 로봇이 충돌 없이 경로를 추적하여 목표지점에 도착하도록 기본 방책들을 조합한 지능주행 방법을 제안하였다. 이러한 대부분 기법들은 퍼지논리 제어기들을 이용하여 구현하였으며, 모든 로봇에 동일하게 적용하였다. 퍼지 제어기의 성능을 향상시키기 위해서 유전 알고리즘을 이용하여 퍼지 제어기의 membership function과 rules set를 진화시켰다. 모의실험 결과 제안한 방법이 주행문제에 긍정적인 결과가 있음이 증명되었다.

Keywords

References

  1. C. E. Thomas, M. A. C. Pacheco, M.M. and B.R. Vellasco, "Mobile Robot Path Planning Using Genetic Algorithms," International Work-Conference on Artificial Neural Networks, Springer Berlin Heidelberg, pp. 671-679, 1999. DOI: 10.1007/BFb0098225
  2. D. Janglova, "Neural Networks in Mobile Robot Motion," International Journal of Advanced Robotic Systems, vol. 1, no. 1, pp. 15-22, 2004. DOI: 10.5772/5615
  3. R. Carelli, C.M. Soria and B. Morales, "Vision-based Tracking Control for Mobile Robots," in Proceedings of 12th International Conference on Advanced Robotics(ICAR'05), Seattle, WA, pp. 148-152, 2005. DOI: 10.1109/ICAR.2005.1507405
  4. W. J. Yim, J. B. Park, "Analysis of Mobile Robot Navigation using Vector Field Histogram According to the Number of Sectors, the Robot Speed and the Width of the Path," in Proceedings of 2014 14th International Conference on Control, Automation and Systems (ICCAS), IEEE, pp. 1037-1040, 2014. DOI: 10.1109/ICCAS.2014.6987943
  5. M. G. Park, J. H. Jeon, M. C. Lee, "Obstacle Avoidance for Mobile Robots using Artificial Potential Field Approach with Simulated Annealing," in Proceedings of IEEE International Symposium on Industrial Electronics, ISIE 2001, vol. 3, pp. 1530-1535, 2001. DOI: 10.1109/ISIE.2001.931933
  6. T. Jin, "Obstacle Avoidance of Mobile Robot based on Behavior Hierarchy by Fuzzy Logic," International Journal of Fuzzy Logic and Intelligent Systems, vol. 12, no. 3, pp. 245-249, 2012. DOI: 10.5391/IJFIS.2012.12.3.245
  7. H. G. Nguyen, W. H. Kim, J. H. Shin, "A Study on an Adaptive Robust Fuzzy Controller with GAs for Path Tracking of a Wheeled Mobile Robot," International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 1, pp. 12-18, 2010. DOI: 10.5391/IJFIS.2010.10.1.012
  8. I. Hassanzadeh, S.M. Sadigh, "Path Planning for a Mobile Robot using Fuzzy Logic Controller Tuned by GA," 6th International Symposium on Mechatronics and its Applications, pp. 1-5, 2009. DOI: 10.1109/ISMA.2009.5164798
  9. Q. Liu, Y. G. Lu, C. X. Xie, "Optimal Genetic Fuzzy Obstacle Avoidance Controller of Autonomous Mobile Robot Based on Ultrasonic Sensors," in Proceedings of 2006 IEEE International Conference on Robotics and Biomimetics, pp. 125-129, 2006. DOI: 10.1109/ROBIO.2006.340327