• 제목/요약/키워드: Fuzzy function

검색결과 1,661건 처리시간 0.034초

정보입자기반 RBFNNs에 의한 하수처리공정 시뮬레이터의 설계 (Design of Sewage Treatment Process Simulator with the Aid of IG-based RBFNNs)

  • 이승주;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1958-1959
    • /
    • 2011
  • RBFNNs(Radial Basis Function Neural Networks) 모델의 경우 Min-Max, HCM(Hard C-means)클러스터링 그리고 FCM(Fuzzy C-means)클러스터링 중 한가지를 통해 데이터 입자는 로드 규칙을 생성한 후 퍼지 공간을 분할 및 가우시안 함수의 정점을 정의한다. 본 논문은 기존의 방법과는 다르게 Min-Max와 FCM클러스터링을 혼합하여 로드의 규칙을 생성한 후 퍼지 공간을 분할 및 가우시안 함수의 정정을 정의하는 방법으로 사용하고자 한다. PSO최적화 알고리즘을 이용하여 같은조건에서 최적화한 기존의 방법으로 모델링된 RBFNNs와 Min-Max와 FCM 클러스터링을 혼합하여 사용한 방법의 비교를 통하여 어떤 모델의 성능이 더욱 좋은지 비교하고자 한다.

  • PDF

영상분할의 최적 임계치를 구하는 빠른 방법 (A Fast Method for Finding the Optimal Threshold for Image Segmentation)

  • 신용식;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.109-112
    • /
    • 2001
  • 영상분할에 있어서 최적의 임계치를 구하는 것은 영상을 구성하고 있는 픽셀들을 의미있는 집단으로 나누는 거와 같으며 이를 위하여 퍼지화 정도를 측정하여 최소의 퍼지화 정도를 갖는 임계치를 최적의 임계치로 설정한다. 일반적으로 소속도는 하나의 픽셀과 그 픽셀이 속한 영역의 관계로 표현될 수 있는데 소속도 계산을 위한 엔트로피로 샤논(Shannon)함수를 사용한다[1]. Liang-Kai Huang에 의하여 제안된 알고리즘은 그 수렴속도 면에 있어서 많은 문제점을 갖고 있다[2]. 본 논문에서는 이런 수렴속도를 좀더 개선하기 위하여 SPOI(Simplified Fixed Point Iteration)를 제안하고 여러 가지 실험영상을 사용하여 졔안된 논문의 우수성을 보이고자 한다. 실험결과 적절한 임계치를 구하면서도 기존의 논문보다 속도면에서 상당히 우수한 특성을 보이고 있다.

  • PDF

다중목적 입자군집 최적화 알고리즘을 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계 (Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization)

  • 김욱동;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1966-1967
    • /
    • 2011
  • 본 연구에서는 방사형 기저 함수를 이용한 다항식 신경회로망(Polynomial Neural Network) 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층의 다항식 노드 대신에 다중 출력 형태의 방사형 기저 함수를 사용하여 각 노드가 방사형 기저 함수 신경회로망(RBFNN)을 형성한다. RBFNN의 은닉층에는 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. 제안된 분류기는 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Multiobjective Particle Swarm Optimization(MoPSO)을 사용하여 모델의 성능뿐만 아니라 모델의 복잡성 및 해석력을 고려하였다. 패턴 분류기로써의 제안된 모델을 평가하기 위해 Iris 데이터를 이용하였다.

  • PDF

회전체 기계전단을 위한 Hybrid 진단 시스템

  • 박홍석;강신현;이재종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.852-855
    • /
    • 1995
  • In modern plant lndustry, dignosis system is an essential implement because a human operator cannot check the state of system all the time. The recent facility needs a computer system which is able to replace and extense the function of the human expert. Checking the state of the plant system, the computer system uses signals form sensors attached to the plant systems. But, It is difficult to predict the cause of the failure from the sensing signals. Because the relationship among the signals cannot be easily represented by mathematical models. So expert system based on a fuzzy rule and Neural network method is sugguested. Expert system decide whether aa state of the system is ordinary of failure by the evaluation of the signals. If the state of the system is unstable, expert system preprocess the signals. When fault is occurred in the machine, the expert system dignoses the state of the system and find the cause as a primary tool. If the expert system dose not find the adequate cause successfully, neural network system uses the preprocessed signals as an input and propose a cause of the failure.

  • PDF

An Intelligent Fire Detection Algorithm for Fire Detector

  • Hong, Sung-Ho;Choi, Moon-Su
    • International Journal of Safety
    • /
    • 제11권1호
    • /
    • pp.6-10
    • /
    • 2012
  • This paper presents a study on the analysis for reducing the number of false alarms in fire detection system. In order to intelligent algorithm fuzzy logic is adopted in developing fire detection system to reduce false alarm. The intelligent fire detection algorithm compared and analyzed the fire and non-fire signatures measured in circuits simulating flame fire and smoldering fire. The algorithm has input variables obtained by fire experiment with K-type thermocouple and optical smoke sensor. Also triangular membership function is used for inference rules. And the antecedent part of inference rules consists of temperature and smoke density, and the consequent part consists of fire probability. A fire-experiment is conducted with paper, plastic, and n-heptane to simulate actual fire situation. The results show that the intelligent fire detection algorithm suggested in this study can more effectively discriminate signatures between fire and similar fire.

소속 함수와 퍼지 논리를 이용한 자기 주도적 학습 내용과 시험 평가 방법에 관한 연구 (A Study on Self-Directed Learning Contents and Examinations Assessment Methods by Using Membership Function and Fuzzy Logic)

  • 정회인;강인주;노영욱;김광백
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(하)
    • /
    • pp.741-746
    • /
    • 2002
  • 본 논문에서는 학습자 스스로가 학습 능력을 조절하고 학습 내용과 시험 평가를 객관적으로 판단할 있는 자기 주도적 학습 내용 및 시험 평가 방법을 제안하였다. 제안된 자기 주도적 학습 내용 및 시험평가 방법은 삼각형 타입의 소속 함수와 퍼지 논리를 이용하여 학습 능력과 시험 능력의 소속도를 계산하고 각각에 대해 퍼지 등급도를 부여하였다. 학습 능력의 소속도와 시험 능력의 소속도에 대해서 퍼지 관계의 연산 및 합성에 의해 최종 소속도를 계산하고 퍼지 등급도를 결정하여 학습자가 학습 능력의 소속도와 시험 능력의 소속도 및 최종 퍼지 등급도를 분석하여 스스로 학습을 조정할 수 있도록 하였다. 그리고 제안된 연구 내용을 정보 검색사 필기 과목에 적용하여 구현하였다.

  • PDF

과도안정도 에너지 마진 향상을 위한 TCSC 적정치의 실시간 산정 (Real-Time Estimation of TCSC Quantity for Improvement of Transient Stability Energy Margin)

  • 김수남;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.242-244
    • /
    • 2000
  • This paper presents a method for real-time estimation of TCSC quantity in order to enhance the power system transient stability energy margin using fuzzy neural network in multi-machine system. This paper has two parts, the first part is to estimate the energy margin. To set critical energy, we use the potential energy boundary surface(PEBS) method which one of the transient energy function(TEF) method. And the second is to determine the TCSC quantify and the line to be injected. In order to make training data in this step, we use genetic algorithm. The proposed method is applied to 6-bus, 7-line, 4-machine model system to show its effectiveness.

  • PDF

건설공사를 위한 위험분석기법 사례연구 (A Case Study on Risk Analysis of Large Construction Projects)

  • 김창학;박서영;곽중민;강인석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1155-1162
    • /
    • 2004
  • This research proposes a new risk analysis method in order to guarantee successful performance of construction projects. The proposed risk analysis methods consists of four phases. First step, AHP model can help contractors decide whether or not they bid for a project by analysing risks involved in the project. Second step, the influence diagraming, decision tree and Monte Carlo simulation are used as tools to analyze and evaluate project risks quantitatively. Third step, Monte Carlo simulation is used to assess risk for groups of activities with probabilistic branching and calendars. Finally, Fuzzy theory suggests a risk management method for construction projects, which is using subjective knowledge of an expert and linguistic value, to analyze and quantify risk. The result of study is expected to improve the accuracy of risk analysis because three factors, such as probability, impact and exposure, for estimating membership function are introduced to quantify each risk factor. Consequently, it will help contractors identify risk elements in their projects and quantify the impact of risk on project time and cost.

  • PDF

고급 분산 제어시스템을 위한 신경 회로망 제어 알고리즘의 개발 (Development of neural network algorithm for an advanced distributed control system)

  • 이승준;박세화;박동조;김병국;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.953-958
    • /
    • 1993
  • We develop a neural network control algorithm for the ACS (Advanced Control System). The ACS is an extended version of the DCS (Distributed Control System) to which functions of fault detection and diagnosis and advanced control algorithms are added such as neural networks, fuzzy logics, and so on. In spite of its usefulness proven by computer simulations, the neural network control algorithm, as far as we know, has no tool which makes it applicable to process control. It is necessary that the neural network controller should be turned into the function code for its application to the ACS. So we develop a general method to implement the neural network control systems for the ACS. By simulations using the simulator for the boiler of 'Seoul fire power plant unit 4', the methodology proposed in this paper is validated to have the applicability to process control.

  • PDF

원전 증기 발생기 세관 검사용 비젼시스템 개발에 관한 연구 (A study on development of a vision system for the test of steam generator holes in nuclear power plants)

  • 왕한홍;김종수;한성현;심상한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.101-104
    • /
    • 1996
  • In nuclear power plants, workers are reluctant of works in steam generator because of the high radiation environment and limited working space. It is strongly recommended that the examination and maintenance works be done by an automatic system for the protection of the operator from the radiation exposure. In this paper, it is proposed a new approach to the development of the automatic vision system to examine and repair the steam generator tubes at remote distance. Digital signal processors are used in implementing real time recognition and examination of steam generator holes in the proposed vision system. Performance of proposed digital vision system is illustrated by experiment for similar steam generator model.

  • PDF