• 제목/요약/키워드: Fuzzy function

검색결과 1,661건 처리시간 0.028초

Locality-Sensitive Hashing for Data with Categorical and Numerical Attributes Using Dual Hashing

  • Lee, Keon Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권2호
    • /
    • pp.98-104
    • /
    • 2014
  • Locality-sensitive hashing techniques have been developed to efficiently handle nearest neighbor searches and similar pair identification problems for large volumes of high-dimensional data. This study proposes a locality-sensitive hashing method that can be applied to nearest neighbor search problems for data sets containing both numerical and categorical attributes. The proposed method makes use of dual hashing functions, where one function is dedicated to numerical attributes and the other to categorical attributes. The method consists of creating indexing structures for each of the dual hashing functions, gathering and combining the candidates sets, and thoroughly examining them to determine the nearest ones. The proposed method is examined for a few synthetic data sets, and results show that it improves performance in cases of large amounts of data with both numerical and categorical attributes.

Advances in Nonlinear Predictive Control: A Survey on Stability and Optimality

  • Kwon, Wook-Hyun;Han, Soo-Hee;Ahn, Choon-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권1호
    • /
    • pp.15-22
    • /
    • 2004
  • Some recent advances in stability and optimality for the nonlinear receding horizon control (NRHC) or the nonlinear model predictive control (NMPC) are assessed. The NRHCs with terminal conditions are surveyed in terms of a terminal state equality constraint, a terminal cost, and a terminal constraint set. Other NRHCs without terminal conditions are surveyed in terms of a control Lyapunov function (CLF) and cost monotonicity. Additional approaches such as output feedback, fuzzy, and neural network are introduced. This paper excludes the results for linear receding horizon controls and concentrates only on the analytical results of NRHCs, not including applications of NRHCs. Stability and optimality are focused on rather than robustness.

Attitude Control of Artificial Satellites via Intelligent Digital Redesign

  • Lee, Ho-Jae;Park, Jin-Bae;Lee, Yeun-Woo;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1283-1288
    • /
    • 2003
  • This paper proposes an approach to attitude control artificial satellites with jet-engine. The jet-engine produces on-off thrust, which can be modelled as pulse-width-modulated (PWM) function. Therefore, the problem is converted to design a PWM controller and we develop an efficient technique for this purpose using digital redesign. The digital redesign is a converting technique a well-designed analog controller into the equivalent digital one maintaining the property of the original analog control system in the sense of state-matching. The redesigned digital controller is again converted into PWM controller using the equivalent area principle. We show a computer simulation of the attitude control of artificial satellites.

  • PDF

Enhancing Security Gaps in Smart Grid Communication

  • Lee, Sang-Hyun;Jeong, Heon;Moon, Kyung-Il
    • International Journal of Advanced Culture Technology
    • /
    • 제2권2호
    • /
    • pp.7-10
    • /
    • 2014
  • In order to develop smart grid communications infrastructure, a high level of interconnectivity and reliability among its nodes is required. Sensors, advanced metering devices, electrical appliances, and monitoring devices, just to mention a few, will be highly interconnected allowing for the seamless flow of data. Reliability and security in this flow of data between nodes is crucial due to the low latency and cyber-attacks resilience requirements of the Smart Grid. In particular, Artificial Intelligence techniques such as Fuzzy Logic, Bayesian Inference, Neural Networks, and other methods can be employed to enhance the security gaps in conventional IDSs. A distributed FPGA-based network with adaptive and cooperative capabilities can be used to study several security and communication aspects of the smart grid infrastructure both from the attackers and defensive point of view. In this paper, the vital issue of security in the smart grid is discussed, along with a possible approach to achieve this by employing FPGA based Radial Basis Function (RBF) network intrusion.

통계적 퍼지 함수를 이용한 전력용 변압기 유중가스 판정 시스템 (Dissolved Gas Analysis Interpretation System for Power Transformers using Statical Fuzzy Function)

  • 조성민;김재철;신희상;권동진;구교선
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 추계학술대회 논문집
    • /
    • pp.275-278
    • /
    • 2007
  • Dissolved gases analysis (DGA) is one of the most useful techniques to detect incipient faults in power transformers. Criteria interpreting DGA result is the most important. Because of difference of operation environment, construction type, oil volume, and etc, the interpretative criteria of DGA at KEPCO must be different with other standard like IEC-60599, Rogers and Doernenburg. In this paper, we collected the DGA data of the normal condition transformers and the incipient fault transformer to suggest the most appropriate criteria. Using these data, this paper suggests appropriate condition classification algorithm. Suggested algorithm can help to detect incipient fault earlier without unnecessary sampling.

  • PDF

A Robust Sensorless Vector Control System for Induction Motors

  • Huh Sung-Hoe;Choy Ick;Park Gwi-Tae
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.443-447
    • /
    • 2001
  • In this paper, a robust sensorless vector control system for induction motors with a speed estimator and an uncertainty observer is presented. At first, the proposed speed estimator is based on the MRAS(Mode Reference Adaptive System) scheme and constructed with a simple fuzzy logic(FL) approach. The structure of the proposed FL estimator is very simple. The input of the FL is the rotor flux error difference between reference and adjustable model, and the output is the estimated incremental rotor speed Secondly, the unmodeled uncertainties such as parametric uncertainties and external load disturbances are modeled by a radial basis function network(RBFN). In the overal speed control system, the control inputs are composed with a norminal control input and a compensated control input, which are from RBFN observer output and the modeling error of the RBFN, repectively. The compensated control input is derived from Lyapunov unction approach. The simulation results are presented to show the validity of the proposed system.

  • PDF

Low Power Design of the Neuroprocessor

  • Pandya, A.S.;Agarwal, Ankur;Chae, G.Y.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권1호
    • /
    • pp.79-83
    • /
    • 2004
  • This paper presents the performance analysis for CPL based design of a Low power digital neuroprocessor. We have verified the functionality of the components at the high level using Verilog and carried out the simulations in Silos. The components of the proposed digital neuroprocessor have also been verified at the layout level in LASI. The layouts have then been simulated and analyzed in Winspice for their timing characteristics. The result shows that the proposed digital neuroprocessor consistently consumes less power than other designs of the same function. It can also be seen that the proposed functions have lesser propagation delay and thus higher speed compared to the other designs.

Kernel-based actor-critic approach with applications

  • Chu, Baek-Suk;Jung, Keun-Woo;Park, Joo-Young
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권4호
    • /
    • pp.267-274
    • /
    • 2011
  • Recently, actor-critic methods have drawn significant interests in the area of reinforcement learning, and several algorithms have been studied along the line of the actor-critic strategy. In this paper, we consider a new type of actor-critic algorithms employing the kernel methods, which have recently shown to be very effective tools in the various fields of machine learning, and have performed investigations on combining the actor-critic strategy together with kernel methods. More specifically, this paper studies actor-critic algorithms utilizing the kernel-based least-squares estimation and policy gradient, and in its critic's part, the study uses a sliding-window-based kernel least-squares method, which leads to a fast and efficient value-function-estimation in a nonparametric setting. The applicability of the considered algorithms is illustrated via a robot locomotion problem and a tunnel ventilation control problem.

A Particle Filtering Approach for On-Line Failure Prognosis in a Planetary Carrier Plate

  • Orchard, Marcos E.;Vachtsevanos, George J.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.221-227
    • /
    • 2007
  • This paper introduces an on-line particle-filtering-based framework for failure prognosis in nonlinear, non-Gaussian systems. This framework uses a nonlinear state-space model of the plant(with unknown time-varying parameters) and a particle filtering(PF) algorithm to estimate the probability density function(pdf) of the state in real-time. The state pdf estimate is then used to predict the evolution in time of the fault indicator, obtaining as a result the pdf of the remaining useful life(RUL) for the faulty subsystem. This approach provides information about the precision and accuracy of long-term predictions, RUL expectations, and 95% confidence intervals for the condition under study. Data from a seeded fault test for a UH-60 planetary carrier plate are used to validate the proposed methodology.

Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA

  • Lee, Hansung;Yoo, Jang-Hee;Park, Daihee
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.333-342
    • /
    • 2014
  • Most hyper-ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex-shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K-means algorithm, fuzzy C-means algorithm, GMM-EM algorithm, and HEC algorithm based on minimum-volume ellipsoids using Mahalanobis distance.