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Abstract

Locality-sensitive hashing techniques have been developed to efficiently handle nearest neigh-
bor searches and similar pair identification problems for large volumes of high-dimensional
data. This study proposes a locality-sensitive hashing method that can be applied to nearest
neighbor search problems for data sets containing both numerical and categorical attributes.
The proposed method makes use of dual hashing functions, where one function is dedicated
to numerical attributes and the other to categorical attributes. The method consists of creat-
ing indexing structures for each of the dual hashing functions, gathering and combining the
candidates sets, and thoroughly examining them to determine the nearest ones. The proposed
method is examined for a few synthetic data sets, and results show that it improves performance
in cases of large amounts of data with both numerical and categorical attributes.
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1. Introduction

Nearest neighbor search is a fundamental operation in data processing that determines a
specified number of data objects nearest to an object specified in a query from a collection
of data objects. As the amount and dimensionality of data increase, this simple operation
places a considerable burden on search time and space. A related problem to which nearest
neighbor search techniques are applicable is the similar pair identification problem, where
all pairs of data objects similar to each other need to be found. Conventional tree-based
indexing techniques, such as kd-tree and spatial tree, work well to guarantee exact solutions
for low-dimensional data, but break down and almost deteriorate to an exhaustive search in
cases involving high-dimensional data.

As an enabling technique for nearest neighbor search and similar pair identification for large
amounts of high-dimensional data, locality-sensitive hashing (LSH) techniques use hashing
to conduct rapid searches at the cost of the exactness of the results. LSH techniques create
indexing structures, for which they extract short signatures for data objects using hashing
functions and maintain the data objects in buckets according to their signatures. Since there
is no guarantee that all similar objects are mapped to the same bucket, LSH techniques are
approximate. For nearest neighbor search or similar pair identification, LSH techniques first
extract the signature for a given query, and find the candidates to be exampled by calling out
data objects with the same signature as the query. The volume of the resulting candidates is
much smaller than that of the original data set.
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When measurements are recorded from different perspectives,
the corresponding data comes to have as many attributes as
measurements. Some attributes are numerical and others can
be categorical. Attributes are sometimes specified by a set, e.g.,
text values in addresses, memos, and messages. Most LSH
techniques have been developed for numerical data, and a few
LSH techniques have been attempted for categorical data and
set-valued data [1]. Nevertheless, much data in real life contain
numerical and categorical attributes together. Little attention
has been paid to LSH techniques to deal with data containing
such mixed attributes.

This paper is concerned with an LSH technique applicable
to large collections of data with both numerical and categorical
attributes. The remainder of the paper is organized as follows:
Section 2 contains a description of LSH and existing techniques
for numerical and categorical data, respectively. Section 3 de-
tails the proposed LSH technique to incorporate dual hash func-
tions to handle both numerical and categorical attributes. Some
experimental results of the proposed method are presented in
Section 4, and conclusions are offered in Section 5.

2. Related Works

2.1 Locality-Sensitive Hashing

To efficiently locate a specific data item in a collection of data,
a number of indexing structures have been developed in the lit-
erature [2–8]. Most of these adopt either tree-based or hashing-
based approaches. Tree-based indexing methods encode the
space partitioning information into a tree structure in which
the data of interest can be found by scanning down the tree.
Examples of tree-based indexing methods are kd-tree, R-tree,
hierarchical k-means, ball tree, spatial tree, and spill tree [5, 9].
They are efficient at handling search tasks in low-dimensional
space, but perform drastically poorly as the dimensions of space
increase. Hashing is an approach for directly locating data by
computing its location from its value using a special function
called a hash function. A hash function is a computable map
to project a large data set, called keys, to a smaller index set of
a fixed length. Each index of the index set has its own bucket
to which corresponding keys are mapped. When two or more
data objects fall into a bucket together, they are said to collide.
Since the index set is usually much smaller than the data set,
buckets come to have multiple colliding data [1].

In nearest neighbor search and similar pair identification, it
is desirable to find data similar to the given data rather than
to locate it. LSH is an approximate search technique for data

items similar to the one being queried. The query uses special
hash functions that map similar data objects to the same bucket
with a high probability, whereas conventional hash functions do
not make any assumptions about the similarity or homogeneity
in buckets.

The notion of locality-sensitive hashing was first introduced
by Gionis et al. [10], Indyk et al. [11], who defined locality-
sensitive hash functions as follows:

A family of functionsH = {h : S → U} is an LSH family
when for any two points p, q ∈ S, for any function h from H,
the following conditions hold:

• if d(p, q) ≤ r1, then PrH(h(p) = h(q)) ≥ P1.

• if d(p, q) ≥ r2, then PrH(h(p) = h(q)) ≤ P2.

Here, d(p, q) denotes the distance between p and q, PrH(h(p) =

h(q)) indicates the probability of h(p) = h(q), r1 and r2 are
constants for distances (r1 < r2), and P1 and P2 are constants
for probabilities (P1 > P2). A familyH of functions satisfying
the above conditions is called (r1, r2, P1, P2)-sensitive.

Most LSH techniques encode data objects into short binary
strings that play the role of signatures. Data objects with the
same binary strings are maintained in the same buckets. When
a query is made, it is also encoded into a binary string using
the same LSH technique. Following this, data objects from
the bucket with the binary string are examined according to a
nearest neighbor search because the bucket might contain data
objects similar to the one being queried.

2.2 LSH for Numerical Data

Most LSH techniques make use of multiple binary hash func-
tions, each of which produces a bit value such that all bit values
are subsequently concatenated into a binary string. The binary
strings play the role of bucket identifiers for corresponding data
objects. Many LSH techniques have been developed for data
with only numerical attributes [12–18]. The following describes
a few of them.

LSH hashing for binary codes by Andoni and Indyk [12],
Datar et al [13] is a method that uses several hyperplanes speci-
fied randomly selected projection vectors to define hyperplanes.
Each hyperplane plays the role of a hash function that produces
a single bit: 1 for one side of the hyperplane and 0 for the other
side.

Boost similarity-sensitive hashing [19] uses a supervised
method that first samples a subset of data to determine similar
and dissimilar pairs among them, and regards similar pairs as
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positive examples and dissimilar pairs as negative ones. Fol-
lowing this, it learns weak classifiers to separate positives from
negatives using the AdaBoost algorithm [20].

The restricted Boltzmann machine (RBM) is a kind of Markov
random field that has a layered network to allow connections
only between the visible layer and the hidden layer, where the
nodes of the network are stochastic binary units. RBM can
learn to maximize the probability of reconstructing the original
input at the visible layer by activating the hidden layer using a
contrastive divergence sampling-based update rule. The RBM-
based LSH method [16] uses a stacked RBM with multiple
layers, where the upper layers have a gradually decreasing num-
ber of nodes. The outputs of the topmost layer are the binary
hash codes for the data fed into the bottom-most layer as input.

The spectral hashing method [18, 21] first finds the principal
axes of the data set and adjusts the data along these axes. It
then chooses the k smallest one-dimensional eigenfunctions to
produce binary codes for data by thresholding the eigenfunction
values for data at level zero.

In semi-supervised hashing [17, 22], both labeled and un-
labeled data pairs are used to determine projection vectors to
minimize the empirical error in the labeled data while maximiz-
ing the entropy of the generated hash bits over the unlabeled
data. The projection vectors are obtained by eigendecomposing
a K ×K matrix, where K is the number of hash functions.

In unsupervised sequential projection learning for hashing
[17], hash functions are sequentially learned as pseudo-labels
are generated at each iteration. Subsequent hash functions
are determined so that they correct errors made by the preced-
ing hash functions. The pseudo-labels are assigned to pairs
of closed data points residing on the opposite side of the hy-
perplane and pairs of far data points on the same side of the
hyperplane. Once pseudo-labels are assigned, the method works
in a similar manner to semi-supervised hashing [22].

In density-sensitive hashing [15], hash functions are deter-
mined by taking into account the distribution of the data set.
The LSH method first applies a k-means algorithm to the data
set to generate small groups and determines pairs of adjacent
groups. It then finds median planes to separate adjacent groups
and evaluates them according to their entropy. It chooses as
hash functions the top-ranked median planes in order of de-
scending entropy score.

2.3 LSH for Categorical Data

In LSH for categorical data [1], the similarity matrix for categor-
ical values is first determined for each categorical attribute using
a data-driven distance [23]. A hierarchical clustering is then
carried out for categorical values with respect to the similarity
matrix for them. Following this, clusters for categorical values
are selected at an appropriate level of the dendrogram of the hi-
erarchical cluster. Each cluster now contains a set of categorical
values and is assigned a binary code. A hash function is defined
for each categorical attribute that produces a binary code corre-
sponding to the value of the categorical attribute. When there
are multiple attributes in data, an LSH function is defined by
combining the hash functions for the categorical attributes. The
LHS function produces a binary string for categorical values
and associates a bucket with a binary string in the domain of
the LSH function.

3. Locality-sensitive Hashing for Data with Nu-
merical and Categorical Attributes

There is no method of assigning data with categorical attributes
in a coordinate system because there is no inherent ordering re-
lationship among categorical values. When numerical attributes
occur together with categorical attributes, data objects cannot
be projected into a coordinate system. LSH techniques for nu-
merical data basically partition the (Euclidean) data space into
subspaces, each of which corresponds to a bucket of a hash
function. It is not easy to have available a distance measure for
data having both numerical and categorical attributes. Hence,
it is better to consider numerical attributes and categorical at-
tributes separately. The similarity between a query and data
object is regarded as high when both the similarity of numerical
attributes and that of categorical attributes are simultaneously
high. When we collect the candidate data into a query, it is
effective to take the intersection of the data objects with numer-
ical attributes similar those of the query, as well as that of data
objects with categorical attributes similar to those of the query.
We thus propose an LSH technique that takes this approach.

3.1 The Proposed Dual Hashing Structure

To support LSH for data with numerical and categorical at-
tributes, our proposed method uses two ways of hashing: one
for numerical attributes and the other for categorical attributes.
For convenience of description, we use the following notations:
A = {AN1

, . . . , ANp
, AC1

, . . . , ACq
} denotes the set of numer-
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ical attributes with p numerical attributes AN1
, . . . , ANp

, and
q categorical attributes AC1

, . . . , ACq
. HN (AN1

, . . . , ANp
;Q)

indicates the hashing result for numerical attributes of a query
Q using hashing function HN , and HC(AC1 , . . . , ACq ;Q) is
the hashing result for the categorical attributes of a query Q us-
ing hashing function HC . BN1

, . . . , BNm
and BC1

, . . . , BCn

are buckets for the corresponding hashing values of hash func-
tionsHN andHC , respectively. Let D = {D1, . . . , Ds} be the
given data set where Di = (diN1

, . . . , diNp
, diC1

, . . . , diCq
) is the

i-th data item.
Figure 1 shows the proposed dual hashing structure for data

with both numerical and categorical attributes. For the given
data set D, the proposed method maps each data object Di into
a numerical bucket BNH(Di) and a categorical bucket BCH(Di).
The buckets maintain only the IDs of data objects belonging to
them in order to not store duplicated copies of data objects.

Figure 1. Dual hashing for numerical and categorical attributes.

When a query Q is given, its numerical hash code hN and
categorical hash code hC are computed as follows:

hN = HN (AN1
, . . . , ANp

;Q) (1)

hC = HC(AC1
, . . . , ACq

;Q) (2)

The candidate data set DQ similar to query Q is the intersec-
tion of the corresponding buckets BNH and BCH .

DQ = BNH ∩BCH (3)

3.2 LSH for Numerical Attributes

To get the specified number k of nearest neighbors to the query
Q, the numerical similarity SN (Di, Q) and the categorical sim-
ilarity SC(Di, Q) are computed for each data item Di ∈ DQ .
When SN (Di, Q) is computed, only the numerical attribute val-
ues (Di

N1
, . . . , Di

Np
) of Di and the corresponding numerical

attribute values of query Q are considered. Most LSH tech-
niques for numerical data assume that similarities are computed

through Euclidean distance after the standardization of data to
have mean 0 and standard deviation 1.

3.3 LSH for Categorical Attributes

A typical distance measure dk(a, b) for categorical values a and
b is defined as dk(a, b) = 0 if a = b; otherwise, dk(a, b) = 1.
That is, it outputs 1 as the distance when they are different,
and 0 when the two values are the same. The corresponding
similarity measure ST

k (a, b) is defined as follows:

ST
k (a, b) =

{
1 if a = b

0 otherwise
(4)

Hence, the measure cannot have any distance information
when the compared categorical values are different. To handle
this problem, data-driven distance measures have been studied
for data with categorical attributes [23]. They make use of
attribute value distributions in a given data set and determine
the distances between attribute values, i.e., between categorical
values. Boriah et al. [23] have surveyed data-driven similarity
measures on categorical values. Three measures among them
are presented in the following, where Sj(a, b) denotes the sim-
ilarity of categorical values a and b for the j-th attribute ACj

,
fk(a) is the number of times attribute ACk

takes the value a in
data set D, and pk(a) is the sample probability of ACk

to take
a, i.e., pk(a) = fk(a)/N , where N is the number of data in D.
p2k(a) is another probability estimate of ACk

to take a, defined
as p2k = fk(a)(fk(a)− 1)/(N(N − 1)).

(IOF measure)

SI
k(a, b) =

{
1 if a = b
1

1+log fk(a) log fk(a)
otherwise

(5)

(OF measure)

SO
k (a, b) =

{
1 if a = b
1

1+log N
fk(a)

log N
fk(b)

otherwise
(6)

(Goodall measure)

SG
k (a, b) =

{
1−

∑
q p

2
k(q) if a = b

0 otherwise
(7)

When there are multiple attributes AC1
, AC2

, . . . , ACq
, the sim-

ilarity S(Di, Dj) is computed by the weighted sum of the sim-
ilarity of each attribute. Here, ωk is the weighting factor for
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attribute ACk
and avk(Di) is the k-th attribute value of the i-th

data item Di.

S(Di, Dj) =

q∑
k=1

ωkSk(avk(Di), avk(Dj)) (8)

The similarities are combined into a single value S(Di, Q)

using a weighted sum, where w ∈ (0, 1).

S(Di, Q) = wSN (Di, Q) + (1− w)SC(Di, Q) (9)

4. Experiments

To test the performance of the proposed method, we conducted
a few experiments under the following conditions: for LSH with
numerical attributes, we used density-sensitive hashing, which
explores the geometric structure of data to generate hash codes.
For LSH with categorical attributes, we used data-driven cate-
gorical LSH [1], which makes use of the data-driven similarity
measure for categorical values.

We conducted experiments for two synthetically generated
data sets. Each synthetic data set consists of 1,000,000 data ob-
jects with 10 numerical attributes and five categorical attributes,
each of which has 10 categorical values. The first data set D1

was generated from uniformly distributed spaces in which nu-
merical attributes were drawn from the space [0, 10]10, and the
categorical attributes had uniform probabilistic distributions
over the 10 categorical values. The second data set D2 was
generated to contain 40 clusters. In each of these, the cluster
mean vectors were randomly selected and the corresponding
covariance matrices were set to diag(3, 3, . . . , 3). Each cate-
gorical attribute was set to follow a multinomial distribution,
the probabilities of which are selected from a uniform Dirich-
let distribution Dir(0.1, 0.1, . . . , 0.1). A total of 25,0000 data
objects were generated for each cluster.

For numerical attributes, 10-bit LSH codes were generated
using density-sensitive hashing. For categorical attributes, the
categorical values were encoded into three disjoint groups, and
35 indices were created altogether. For both data sets D1 and
D2, the 30 queries randomly generated were handled for candi-
dates suggested by the proposed method, and the five nearest
neighbors were searched for. The evaluation was carried out
using the ground truth created through an exhaustive search of
the entire data for the data being queried. When the candidate
subset was selected using the LSH method for numerical at-
tributes, the data set having the same hash code as that of the

Table 1. Experimental results of the proposed method
Data set Num. LSH Cat. LSH Mixed LSH
D1 81.3 74.9 90.7
D2 82.4 75.4 92.8

LHS, locality-sensitive hashing

query was chosen without considering neighboring buckets. In
the hash codes of LSH for categorical attributes, the Hamming
distance between hash codes does not contain any neighbor-
hood information. Table 1 shows the experimental results in
terms of recall, where Num. LSH indicates the LSH method
that considers only numerical attributes, Cat. LSH is the LSH
method that takes into account only categorical attributes, and
Mixed LSH denotes the proposed dual hashing technique that
uses both LSH methods together.

5. Conclusions

For big data applications, nearest neighbor search and similar
pair identification can be burdensome tasks even though they
are rather fundamental operations. Various LSH techniques
have been developed to handle such tasks in an efficient but
approximate manner. Most LSH techniques are applicable to
only numerical data, and little attention has thus far been paid to
how LSH can be engineered for data sets containing numerical
and categorical attributes together. We proposed in this paper a
method to combine numerical and categorical LSH techniques
to handle this problem. From the experiments, we concluded
that the proposed approach provides improved performance, as
we had expected.
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