• Title/Summary/Keyword: Fuzzy T-S Model

Search Result 202, Processing Time 0.026 seconds

The design T-S fuzzy model-based target tracking systems (T-S 퍼지모델 기반 표적추적 시스템)

  • Hoh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.419-422
    • /
    • 2005
  • In this note, the Takagi-Sugeno (T-S) fuzzy-model-based state estimator using standard Kalman filter theory is investigated. In that case, the dynamic system model is represented the T-S fuzzy model with the fuzzy state estimation. The steady state solutions can be found for proposed modeling method and dynamic system for maneuvering targets can be approximated as locally linear system. And then, modeled filter is corrected by the fuzzy gain which is a fuzzy system using the relation between the filter residual and its variation. This paper studies the T-S fuzzy model-based state estimator which the dynamic system can be approximated as linear system.

  • PDF

Linearization of T-S Fuzzy Systems and Robust Optimal Control

  • Kim, Min-Chan;Wang, Fa-Guang;Park, Seung-Kyu;Kwak, Gun-Pyong;Yoon, Tae-Sung;Ahn, Ho-Kyun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.702-708
    • /
    • 2010
  • This paper proposes a novel linearization method for Takagi.sugeno (TS) fuzzy model. A T-S fuzzy controller consists of linear controllers based on local linear models and the local linear controllers cannot be designed independently because of overall stability conditions which are usually conservative. To use linear control theories easily for T-S fuzzy system, the linearization of T-S fuzzy model is required. However, The linearization of T-S fuzzy model is difficult to be achieved by using existing linearization methods because fuzzy rules and membership functions are included in T-S fuzzy models. So, a new linearization method is proposed for the T-S fuzzy system based on the idea of T-S fuzzy state transformation. For the T-S fuzzy system linearized with uncertainties, a robust optimal controller with the robustness of sliding model control(SMC) is designed.

Missile Adaptive Control using T-S Fuzzy Model (T-S 퍼지 모델을 이용한 유도탄 적응 제어)

  • 윤한진;박창우;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.129-132
    • /
    • 2001
  • In this paper, in order to control uncertain missile autopilot, an adaptive fuzzy control(AEC) scheme via parallel distributed compensation(PDC) is developed for the multi-input/multi-output plants represented by the Takagi-Sugeno(T-S) fuzzy model. Moreover adaptive law is designed so that the plant output tracks the stable reference model(SRM), From the simulations results, we can conclude that the suggested scheme can effectively solve the control problems of uncertain missile systems based on T-S fuzzy model.

  • PDF

T-S Fuzzy Model Based Indirect Adaptive Fuzzy Observer Design

  • Hyun Chang-Ho;Kim You-Keun;Kim Euntai;Park Mignon
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.348-353
    • /
    • 2004
  • This paper proposes an alternative observation scheme, T-S fuzzy model based indirect adaptive fuzzy observer. Nonlinear systems arc represented by fuzzy models since fuzzy logic systems arc universal approximators. In order to estimate the unmeasurable states of a given nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The adaptive fuzzy scheme estimates the parameters comprising the fuzzy model representing the observation system. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observation method, it is applied to an inverted pendulum on a cart.

  • PDF

A study on tracking control for nonlinear systems using T-S fuzzy model (T-S fuzzy 모델을 이용한 비선형 시스템의 tracking 제어에 관한 연구)

  • Shon, Myung-Gong;Seong, Dong-Han;Son, Cheon-Don;Jeung, Eun-Tae;Kwon, Sung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.108-110
    • /
    • 2006
  • This paper deals with a tracking problem for nonlinear systems using its T-S fuzzy model and internal model. We extend the internal model of linear systems to an internal model of T-S fuzzy systems to accompany with state error of zero. A sufficient condition of the existence of a tracking controller for T-S fuzzy systems is expressed by linear matrix inequalities. A system of inverted pendulum on cart is illustrated to verify our method.

  • PDF

Design of T-S Fuzzy Model based Adaptive Fuzzy Observer and Controller

  • Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.9-21
    • /
    • 2009
  • This paper proposes the alternative observer and controller design scheme based on T-S fuzzy model. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given unknown nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. The proposed controller is based on a simple output feedback method. Therefore, it solves the singularity problem, without any additional algorithm, which occurs in the inverse dynamics based on the feedback linearization method. The adaptive fuzzy scheme estimates the parameters and the feedback gain comprising the fuzzy model representing the observation system. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observer and controller, they are applied to an inverted pendulum on a cart.

T-S Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems in Discrete Time (이산시간에서의 장주기모델에 관한 다개체시스템의 T-S 퍼지 군집제어)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae;Kim, Moon Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.308-315
    • /
    • 2016
  • This paper addresses a formation control problem for a phugoid model-based multi-agent system in discrete time by using a Takagi-Sugeno (T-S) fuzzy model-based controller design technique. The concerned discrete-time model is obtained by Euler's method. A T-S fuzzy model is constructed through a feedback linearization. A fuzzy controller is then designed to stabilize the T-S fuzzy model. Design condition is presented in the linear matrix inequality format.

State Feedback Linearization of Discrete-Time Nonlinear Systems via T-S Fuzzy Model (T-S 퍼지모델을 이용한 이산 시간 비선형계통의 상태 궤환 선형화)

  • Kim, Tae-Kue;Wang, Fa-Guang;Park, Seung-Kyu;Yoon, Tae-Sung;Ahn, Ho-Kyun;Kwak, Gun-Pyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.865-871
    • /
    • 2009
  • In this paper, a novel feedback linearization is proposed for discrete-time nonlinear systems described by discrete-time T-S fuzzy models. The local linear models of a T-S fuzzy model are transformed to a controllable canonical form respectively, and their T-S fuzzy combination results in a feedback linearizable Tagaki-Sugeno fuzzy model. Based on this model, a nonlinear state feedback linearizing input is determined. Nonlinear state transformation is inferred from the linear state transformations for the controllable canonical forms. The proposed method of this paper is more intuitive and easier to understand mathematically compared to the well-known feedback linearization technique which requires a profound mathematical background. The feedback linearizable condition of this paper is also weakened compared to the conventional feedback linearization. This means that larger class of nonlinear systems is linearizable compared to the case of classical linearization.

A T-S Fuzzy Identification of Interior Permanent Magnet Synchronous (매입형 영구자석 동기전동기의 T-S 퍼지 모델링)

  • Wang, Fa-Guang;Kim, Min-Chan;Kim, Hyun-Woo;Park, Seung-Kyu;Yoon, Tae-Sung;Kwak, Gun-Pyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • Control of interior permanent magnet (IPMSM) is difficult because its nonlinearity and parameter uncertainty. In this paper, a fuzzy c-regression models clustering algorithm which is based on T-S fuzzy is used to model IPMSM with a series linear model and weight them by memberships. Lagrangian of constrained function is built for calculating clustering centers where training output data are considered. Based on these clustering centers, least square method is applied for T-S fuzzy linear model parameters. As a result, IPMSM can be modeled as T-S fuzzy model for T-S fuzzy control of them.

Fuzzy Sliding Mode Control of Nonlinear System Based on T-S Fuzzy Dynamic Model (T-S 퍼지 모델을 이용한 비선형 시스템의 퍼지 슬라이딩 모드 제어)

  • Yoo, Byung-Kook;Yang, Keun-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.112-117
    • /
    • 2004
  • This paper suggests the design and analysis of the fuzzy sliding mode control for a nonlinear system using Takagi-Sugeno(T-S) fuzzy model. In this control scheme, identifying procedure that the input gain matrices in a T-S fuzzy model are manipulated into the same one is needed. The input disturbances generated in the identifying procedure are resolved by incorporating the disturbance treatment method of the conventional sliding mode control. The proposed control strategy can also treat the input disturbances that can not be linearized in the linearization procedure of T-S fuzzy modeling. Design example for the nonlinear system, an inverted pendulum on a cart, demonstrates the utility and validity of the proposed control scheme.